A350419 Irregular table read by rows, where row k lists the semiprimes, s*t (s<=t) in increasing order, where s and t are the smaller and larger parts of the partitions of m = 2k+2 into two parts.
4, 9, 15, 9, 21, 25, 35, 33, 49, 15, 39, 55, 65, 77, 51, 91, 21, 57, 85, 121, 95, 119, 143, 25, 69, 133, 169, 115, 187, 161, 209, 221, 87, 247, 33, 93, 145, 253, 289, 35, 155, 203, 299, 323, 217, 361, 39, 111, 319, 391, 185, 341, 377, 437, 123, 259, 403, 129, 205, 493, 529
Offset: 1
Examples
Row # | m | partitions of m = s+t | semiprimes k = s*t ----------------------------------------------------------------------- 1 | 4 | 4 = 2+2 --> | 2*2 = 4; 2 | 6 | 6 = 3+3 --> | 3*3 = 9; 3 | 8 | 8 = 3+5 --> | 3*5 = 15; 4 | 10 | 10 = 1+9 = 3+7 = 5+5 --> | 1*9 = 9, 3*7 = 21, 5*5 = 25; 5 | 12 | 12 = 5+7 --> | 5*7 = 35; 6 | 14 | 14 = 3+11 = 7+7 --> | 3*11 = 33, 7*7 = 49; ...
Links
- Eric Weisstein's World of Mathematics, Goldbach Partition
- Wikipedia, Goldbach's conjecture
- Index entries for sequences related to Goldbach conjecture
- Index entries for sequences related to partitions
Programs
-
Maple
T:= n-> select(x-> numtheory[bigomega](x)=2, [seq(s*(2*n+2-s), s=1..n+1)])[]: seq(T(n), n=1..22); # Alois P. Heinz, Dec 31 2021
Comments