cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A350454 Number T(n,k) of endofunctions on [n] with exactly k fixed points, none of which are isolated; triangle T(n,k), n >= 0, 0 <= k <= n/2, read by rows.

Original entry on oeis.org

1, 0, 1, 2, 8, 9, 81, 76, 12, 1024, 875, 180, 15625, 12606, 2910, 120, 279936, 217217, 53550, 3780, 5764801, 4348856, 1118936, 102480, 1680, 134217728, 99111735, 26280072, 2817360, 90720, 3486784401, 2532027610, 686569050, 81864720, 3729600, 30240
Offset: 0

Views

Author

Alois P. Heinz, Dec 31 2021

Keywords

Examples

			Triangle T(n,k) begins:
           1;
           0;
           1,          2;
           8,          9;
          81,         76,        12;
        1024,        875,       180;
       15625,      12606,      2910,      120;
      279936,     217217,     53550,     3780;
     5764801,    4348856,   1118936,   102480,    1680;
   134217728,   99111735,  26280072,  2817360,   90720;
  3486784401, 2532027610, 686569050, 81864720, 3729600, 30240;
  ...
		

Crossrefs

Column k=0 gives A065440.
Row sums give |A069856|.
T(2n,n) gives A001813.
Cf. A349454.

Programs

  • Maple
    c:= proc(n) option remember; add(n!*n^(n-k-1)/(n-k)!, k=2..n) end:
    t:= proc(n) option remember; n^(n-1) end:
    b:= proc(n) option remember; expand(`if`(n=0, 1, add(b(n-i)*
          binomial(n-1, i-1)*(c(i)+`if`(i=1, 0, x*t(i))), i=1..n)))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..n/2))(b(n)):
    seq(T(n), n=0..12);
    # second Maple program:
    egf := k-> exp(LambertW(-x))*(-x-LambertW(-x))^k/((1+LambertW(-x))*k!):
    A350454 := (n, k)-> n! * coeff(series(egf(k), x, n+1), x, n):
    seq(print(seq(A350454(n, k), k=0..n/2)), n=0..9); # Mélika Tebni, Nov 22 2022
  • Mathematica
    c[n_] := c[n] = Sum[n!*n^(n - k - 1)/(n - k)!, {k, 2, n}];
    t[n_] := t[n] = n^(n - 1);
    b[n_] := b[n] = Expand[If[n == 0, 1, Sum[b[n - i]*
         Binomial[n - 1, i - 1]*(c[i] + If[i == 1, 0, x*t[i]]), {i, 1, n}]]];
    T[n_] := With[{p = b[n]}, Table[Coefficient[p, x, i], {i, 0, n/2}]];
    Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, May 06 2022, after Alois P. Heinz *)

Formula

E.g.f. column k: exp(W(-x))*(-x - W(-x))^k / ((1 + W(-x))*k!), W(x) the Lambert W-function. - Mélika Tebni, Nov 22 2022
From Mélika Tebni, Dec 22 2022: (Start)
For n > 1, T(n,1) = n*A045531(n-1).
Sum_{k=0..n} (-1)^(n-k)*T(n+k,k) = 2^n.
Sum_{k=0..n} (-1)^(n-k)*T(n+k,k)/(n+k-1) = 1/n, for n > 1. (End)