cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A350493 a(n) = floor(sqrt(prime(n)))^2 mod n.

Original entry on oeis.org

0, 1, 1, 0, 4, 3, 2, 0, 7, 5, 3, 0, 10, 8, 6, 1, 15, 13, 7, 4, 1, 20, 12, 9, 6, 22, 19, 16, 13, 10, 28, 25, 22, 19, 4, 0, 33, 30, 27, 9, 5, 1, 40, 37, 16, 12, 8, 4, 29, 25, 21, 17, 13, 9, 36, 32, 28, 24, 20, 16, 12, 41, 37, 33, 29, 25, 56, 52, 48, 44, 40, 36
Offset: 1

Views

Author

Simon Strandgaard, Jan 01 2022

Keywords

Examples

			a(4) = A065730(4) mod 4 =  4 mod 4 = 0;
a(5) = A065730(5) mod 5 =  9 mod 5 = 4;
a(6) = A065730(6) mod 6 =  9 mod 6 = 3;
a(7) = A065730(7) mod 7 = 16 mod 7 = 2.
		

Crossrefs

Programs

  • Mathematica
    Table[PowerMod[Floor[Sqrt[Prime[n]]],2,n],{n,72}] (* Stefano Spezia, Jan 02 2022 *)
  • PARI
    a(n) = (sqrtint(prime(n))^2) % n;
    vector(20,n,a(n))
    
  • Python
    from sympy import prime, integer_nthroot
    def a(n): return (integer_nthroot(prime(n), 2)[0]**2)%n
    print([a(n) for n in range(1, 73)]) # Michael S. Branicky, Jan 02 2022
  • Ruby
    require 'prime'
    values = []
    Prime.first(20).each_with_index do |prime, i|
        values << ((Integer.sqrt(prime) ** 2) % (i + 1))
    end
    p values
    

Formula

a(n) = A065730(n) mod n.