A350512 Triangle read by rows with T(n,0) = 1 for n >= 0 and T(n,k) = binomial(n-1,k-1)*(2*k*(n-k) + n)/k for 0 < k <= n.
1, 1, 1, 1, 4, 1, 1, 7, 7, 1, 1, 10, 18, 10, 1, 1, 13, 34, 34, 13, 1, 1, 16, 55, 80, 55, 16, 1, 1, 19, 81, 155, 155, 81, 19, 1, 1, 22, 112, 266, 350, 266, 112, 22, 1, 1, 25, 148, 420, 686, 686, 420, 148, 25, 1, 1, 28, 189, 624, 1218, 1512, 1218, 624, 189, 28, 1
Offset: 0
Examples
Triangle T(n, k) for 0 <= k <= n starts: n\k : 0 1 2 3 4 5 6 7 8 9 ================================================= 0 : 1 1 : 1 1 2 : 1 4 1 3 : 1 7 7 1 4 : 1 10 18 10 1 5 : 1 13 34 34 13 1 6 : 1 16 55 80 55 16 1 7 : 1 19 81 155 155 81 19 1 8 : 1 22 112 266 350 266 112 22 1 9 : 1 25 148 420 686 686 420 148 25 1 etc.
Programs
-
Mathematica
Flatten[Table[Join[{1},Table[Binomial[n-1,k-1](2*k*(n-k) + n)/k,{k,n}]],{n,0,10}]] (* Stefano Spezia, Jan 06 2022 *)
Formula
T(n, n) = 1; T(n, k) = T(n, n-k).
T(2*n, n) = (n+1)^2 * A000108(n).
T(n, k) = T(n-1, k) + T(n-1, k-1) + 2 * binomial(n-2,k-1) for 0 < k < n.
G.f. of column k: (1 + 2*k*x) * x^k / (1 - x)^(k+1).
G.f.: A(x,t) = (1 - (1 + x) * t + 2 * x * t^2) / (1 - (1 + x) * t)^2.
T(n,k) = [x^k] (1 + 2 * n * x + x^2) * (1 + x)^(n-2) for n > 0.
Comments