cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A350512 Triangle read by rows with T(n,0) = 1 for n >= 0 and T(n,k) = binomial(n-1,k-1)*(2*k*(n-k) + n)/k for 0 < k <= n.

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 7, 7, 1, 1, 10, 18, 10, 1, 1, 13, 34, 34, 13, 1, 1, 16, 55, 80, 55, 16, 1, 1, 19, 81, 155, 155, 81, 19, 1, 1, 22, 112, 266, 350, 266, 112, 22, 1, 1, 25, 148, 420, 686, 686, 420, 148, 25, 1, 1, 28, 189, 624, 1218, 1512, 1218, 624, 189, 28, 1
Offset: 0

Views

Author

Werner Schulte, Jan 02 2022

Keywords

Comments

Depending on some fixed integer m there is a family of number triangles T(m; n,k) for 0 <= k <= n with entries: T(m; n,0) = 1 for n >= 0 and T(m; n,k) = binomial(n-1,k-1)*(m*k*(n-k) + n)/k for 0 < k <= n.
Special cases: m=0 (A007318), m=1 (A103450), and m=2 (this triangle).
Further properties: T(m; n,n) = 1 for n >= 0; T(m; n,k) = T(m; n,n-k) for 0 <= k <= n; T(m; 2*n,n) = A000108(n)*A086270(m,n+1) for n >= 0 and m > 0.
T(m; n,k) = T(m; n-1,k) + T(m; n-1,k-1) + m*binomial(n-2,k-1) for 0 < k < n.
G.f. of column k: (1 + m*k*x) * x^k / (1 - x)^(k+1).
G.f.: A(x, t) = (1 - (1+x)*t + m*x*t^2) / (1 - (1+x)*t)^2.
T(m; n,k) = [x^k] (1 + (m*n - m + 2)*x + x^2) * (1 + x)^(n-2) for n > 0.

Examples

			Triangle T(n, k) for 0 <= k <= n starts:
n\k :  0   1    2    3    4    5    6    7   8  9
=================================================
  0 :  1
  1 :  1   1
  2 :  1   4    1
  3 :  1   7    7    1
  4 :  1  10   18   10    1
  5 :  1  13   34   34   13    1
  6 :  1  16   55   80   55   16    1
  7 :  1  19   81  155  155   81   19    1
  8 :  1  22  112  266  350  266  112   22   1
  9 :  1  25  148  420  686  686  420  148  25  1
  etc.
		

Crossrefs

Row sums are A057711(n+1).

Programs

  • Mathematica
    Flatten[Table[Join[{1},Table[Binomial[n-1,k-1](2*k*(n-k) + n)/k,{k,n}]],{n,0,10}]] (* Stefano Spezia, Jan 06 2022 *)

Formula

T(n, n) = 1; T(n, k) = T(n, n-k).
T(2*n, n) = (n+1)^2 * A000108(n).
T(n, k) = T(n-1, k) + T(n-1, k-1) + 2 * binomial(n-2,k-1) for 0 < k < n.
G.f. of column k: (1 + 2*k*x) * x^k / (1 - x)^(k+1).
G.f.: A(x,t) = (1 - (1 + x) * t + 2 * x * t^2) / (1 - (1 + x) * t)^2.
T(n,k) = [x^k] (1 + 2 * n * x + x^2) * (1 + x)^(n-2) for n > 0.