cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A350557 Triangle T(n,k) read by rows with T(n,0) = (2*n)! / (2^n * n!) for n >= 0 and T(n,k) = (Sum_{i=k..n} binomial(i-1,k-1) * 2^i * i! / (2*i)!) * (2*n)! / (2^n * n!) for 0 < k <= n.

Original entry on oeis.org

1, 1, 1, 3, 4, 1, 15, 21, 7, 1, 105, 148, 52, 10, 1, 945, 1333, 472, 96, 13, 1, 10395, 14664, 5197, 1066, 153, 16, 1, 135135, 190633, 67567, 13873, 2009, 223, 19, 1, 2027025, 2859496, 1013512, 208116, 30170, 3380, 306, 22, 1
Offset: 0

Views

Author

Werner Schulte, Jan 05 2022

Keywords

Examples

			Triangle T(n,k) for 0 <= k <= n starts:
n\k :        0        1        2       3      4     5    6   7  8
=================================================================
  0 :        1
  1 :        1        1
  2 :        3        4        1
  3 :       15       21        7       1
  4 :      105      148       52      10      1
  5 :      945     1333      472      96     13     1
  6 :    10395    14664     5197    1066    153    16    1
  7 :   135135   190633    67567   13873   2009   223   19   1
  8 :  2027025  2859496  1013512  208116  30170  3380  306  22  1
  etc.
		

Crossrefs

Cf. A001147 (column 0), A286286 (column 1), A249349 (column 2).
Cf. A000007 (alternating row sums).
Cf. A350512.

Programs

  • Mathematica
    Flatten[Table[If[k==0,(2n)!/(2^n n!),Sum[Binomial[i-1,k-1]2^i i!/(2i)!,{i,k,n}](2n)!/(2^n n!)],{n,0,8},{k,0,n}]] (* Stefano Spezia, Jan 06 2022 *)

Formula

T(n,n) = 1.
T(n,k) = binomial(n-1,k-1) + (2*n - 1) * T(n-1,k) for 0 < k < n.
Conjecture: M(n,k) = (-1)^(n-k) * T(n,k) is matrix inverse of A350512.
Showing 1-1 of 1 results.