cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A350516 a(n) is the least k>1 such that omega(k) is equal to (omega(n*k + 1) - 1)/n.

Original entry on oeis.org

5, 97, 443, 5801, 42697, 7813639, 10303967, 1225192093
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Mar 09 2022

Keywords

Comments

Are all terms prime numbers?
a(9) <= 14567138141, a(10) <= 5509396663871, a(11) <= 4128894057139, a(12) <= 13264466350165447, a(13) <= 6115610326638653. - Daniel Suteu, Mar 14 2022

Examples

			a(2) = 97 because omega(97) = (omega(2*97 + 1) - 1)/2 = (omega(3*5*13) - 1)/2 = 1.
		

Crossrefs

Cf. A001221 (omega).

Programs

  • Mathematica
    a[n_] := Module[{k = 2}, While[PrimeNu[k] != (PrimeNu[n*k + 1] - 1)/n, k++]; k]; Array[a, 5] (* Amiram Eldar, Mar 09 2022 *)
  • PARI
    a(n) = my(k=2); while (omega(k) != (omega(n*k + 1) - 1)/n, k++); k; \\ Michel Marcus, Mar 09 2022
    
  • Python
    from sympy import factorint
    for n in range(1, 8):
        for k in range(2, 10**10):
            if len(factorint(k).keys())*n+1==len(factorint(k*n+1).keys()):
                print(n, k)
                break # Martin Ehrenstein, Mar 14 2022

Extensions

a(8) from Martin Ehrenstein, Mar 14 2022