A350516 a(n) is the least k>1 such that omega(k) is equal to (omega(n*k + 1) - 1)/n.
5, 97, 443, 5801, 42697, 7813639, 10303967, 1225192093
Offset: 1
Examples
a(2) = 97 because omega(97) = (omega(2*97 + 1) - 1)/2 = (omega(3*5*13) - 1)/2 = 1.
Crossrefs
Cf. A001221 (omega).
Programs
-
Mathematica
a[n_] := Module[{k = 2}, While[PrimeNu[k] != (PrimeNu[n*k + 1] - 1)/n, k++]; k]; Array[a, 5] (* Amiram Eldar, Mar 09 2022 *)
-
PARI
a(n) = my(k=2); while (omega(k) != (omega(n*k + 1) - 1)/n, k++); k; \\ Michel Marcus, Mar 09 2022
-
Python
from sympy import factorint for n in range(1, 8): for k in range(2, 10**10): if len(factorint(k).keys())*n+1==len(factorint(k*n+1).keys()): print(n, k) break # Martin Ehrenstein, Mar 14 2022
Extensions
a(8) from Martin Ehrenstein, Mar 14 2022
Comments