A350522 a(n) = 18*n + 16.
16, 34, 52, 70, 88, 106, 124, 142, 160, 178, 196, 214, 232, 250, 268, 286, 304, 322, 340, 358, 376, 394, 412, 430, 448, 466, 484, 502, 520, 538, 556, 574, 592, 610, 628, 646, 664, 682, 700, 718, 736, 754, 772, 790, 808, 826, 844, 862, 880, 898, 916, 934, 952, 970
Offset: 0
Links
- Leo Tavares, Illustration: Triple Hexagonal Rings
- Index entries for linear recurrences with constant coefficients, signature (2,-1).
Programs
-
GAP
List([0..53], n-> 18*n+16)
-
Magma
[18*n+16: n in [0..53]];
-
Maple
seq(18*n+16, n=0..53);
-
Mathematica
Table[18n+16, {n, 0, 53}]
-
Maxima
makelist(18*n+16, n, 0, 53);
-
PARI
a(n)=18*n+16
-
Python
[18*n+16 for n in range(53)]
Formula
a(n) = A239129(n+1) - 1.
From Stefano Spezia, Jan 04 2022: (Start)
O.g.f.: 2*(8 + x)/(1 - x)^2.
E.g.f.: 2*exp(x)*(8 + 9*x).
a(n) = 2*a(n-1) - a(n-2) for n > 1. (End)
a(n) = 3*A008588(n+1) - 2. - Leo Tavares, Sep 14 2022
From Elmo R. Oliveira, Apr 12 2024: (Start)
Comments