A350528 Triangle read by rows: T(n,k) is the number of labeled quasi-threshold graphs on vertex set [n] with k components, for n >= 1 and 1 <= k <= n.
1, 1, 1, 4, 3, 1, 23, 19, 6, 1, 181, 155, 55, 10, 1, 1812, 1591, 600, 125, 15, 1, 22037, 19705, 7756, 1750, 245, 21, 1, 315569, 286091, 116214, 27741, 4270, 434, 28, 1, 5201602, 4766823, 1983745, 493794, 81291, 9198, 714, 36, 1
Offset: 1
Examples
Triangle begins: 1; 1, 1; 4, 3, 1; 23, 19, 6, 1; 181, 155, 55, 10, 1; 1812, 1591, 600, 125, 15, 1; 22037, 19705, 7756, 1750, 245, 21, 1; 315569, 286091; 116214, 27741, 4270, 434, 28, 1; ...
Links
- D. Galvin, G. Wesley and B. Zacovic, Enumerating threshold graphs and some related graph classes, arXiv:2110.08953 [math.CO], 2021.
Programs
-
Mathematica
T[n_, k_] := T[n, k] = Sum[((-1)^(n - j))*StirlingS2[n, j]*k*Binomial[j, k]*(j^(j - k - 1)), {j, 1, n}]; Table[T[n, k], {n, 1, 12}, {k, 1, n}]
Formula
T(n,k) = Sum_{j=1..n} (-1)^(n-j)*Stirling2(n, j)*k*binomial(j, k)*j^(j-k-1) for n >= 1, 1 <= k <= n.
Comments