A350571 Triangular array read by rows. T(n,k) is the number of unlabeled partial functions on [n] with exactly k undefined points, n>=0, 0<=k<=n.
1, 1, 1, 3, 2, 1, 7, 6, 2, 1, 19, 16, 7, 2, 1, 47, 45, 19, 7, 2, 1, 130, 121, 57, 20, 7, 2, 1, 343, 338, 158, 60, 20, 7, 2, 1, 951, 929, 457, 170, 61, 20, 7, 2, 1, 2615, 2598, 1286, 498, 173, 61, 20, 7, 2, 1, 7318, 7261, 3678, 1421, 510, 174, 61, 20, 7, 2, 1
Offset: 0
Examples
Triangle T(n,k) begins: 1; 1, 1; 3, 2, 1; 7, 6, 2, 1; 19, 16, 7, 2, 1; 47, 45, 19, 7, 2, 1; 130, 121, 57, 20, 7, 2, 1; 343, 338, 158, 60, 20, 7, 2, 1; 951, 929, 457, 170, 61, 20, 7, 2, 1; ...
References
- O. Ganyushkin and V. Mazorchuk, Classical Finite Transformation Semigroups, Springer, 2009.
Programs
-
Mathematica
nn = 10; A002861 = Cases[Import["https://oeis.org/A002861/b002861.txt", "Table"], {, }][[;; nn, 2]]; A000081 = Drop[Cases[ Import["https://oeis.org/A000081/b000081.txt", "Table"], {, }][[;; nn + 1, 2]], 1]; Map[Select[#, # > 0 &] &, CoefficientList[Series[ Product[1/(1 - y x^i)^A000081[[i]], {i, 1, nn}] Product[1/(1 - x^i)^A002861[[i]], {i, 1, nn}], {x, 0, nn}], {x,y}]] // Grid
Comments