A350635 Triangle read by rows: T(n,k) is the number of n-element unlabeled P-series with k connected components.
1, 1, 1, 3, 1, 1, 7, 4, 1, 1, 15, 10, 4, 1, 1, 31, 28, 11, 4, 1, 1, 63, 67, 31, 11, 4, 1, 1, 127, 167, 80, 32, 11, 4, 1, 1, 255, 388, 213, 83, 32, 11, 4, 1, 1, 511, 908, 534, 226, 84, 32, 11, 4, 1, 1, 1023, 2053, 1343, 580, 229, 84, 32, 11, 4, 1, 1
Offset: 1
Examples
Triangle begins: 1; 1, 1; 3, 1, 1; 7, 4, 1, 1; 15, 10, 4, 1, 1; 31, 28, 11, 4, 1, 1; 63, 67, 31, 11, 4, 1, 1; 127, 167, 80, 32, 11, 4, 1, 1; ...
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1275 (rows 1..50)
Crossrefs
Programs
-
PARI
B(x) = x*(1 - 2*x + 2*x^2)/((1 - x)*(1 - 2*x)) T(n)=[Vecrev(p/y) | p<-Vec(-1 + exp(sum(k=1, n, y^k*B(x^k)/k + O(x*x^n))))] { my(A=T(8)); for(n=1, #A, print(A[n])) } \\ Andrew Howroyd, Jan 13 2022
Formula
G.f.: -1 + exp(Sum_{k>=1} y^k*B(x^k)/k) where B(x) = x*(1 - 2*x + 2*x^2)/((1 - x)*(1 - 2*x)). - Andrew Howroyd, Jan 13 2022