cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A350635 Triangle read by rows: T(n,k) is the number of n-element unlabeled P-series with k connected components.

Original entry on oeis.org

1, 1, 1, 3, 1, 1, 7, 4, 1, 1, 15, 10, 4, 1, 1, 31, 28, 11, 4, 1, 1, 63, 67, 31, 11, 4, 1, 1, 127, 167, 80, 32, 11, 4, 1, 1, 255, 388, 213, 83, 32, 11, 4, 1, 1, 511, 908, 534, 226, 84, 32, 11, 4, 1, 1, 1023, 2053, 1343, 580, 229, 84, 32, 11, 4, 1, 1
Offset: 1

Views

Author

Salah Uddin Mohammad, Jan 09 2022

Keywords

Examples

			Triangle begins:
    1;
    1,   1;
    3,   1,  1;
    7,   4,  1,  1;
   15,  10,  4,  1,  1;
   31,  28, 11,  4,  1, 1;
   63,  67, 31, 11,  4, 1, 1;
  127, 167, 80, 32, 11, 4, 1, 1;
  ...
		

Crossrefs

Row sums give A349276.
Column 1 is A255047(n-1).
Cf. A263864 (all posets), A349488 (disconnected).

Programs

  • PARI
    B(x) = x*(1 - 2*x + 2*x^2)/((1 - x)*(1 - 2*x))
    T(n)=[Vecrev(p/y) | p<-Vec(-1 + exp(sum(k=1, n, y^k*B(x^k)/k + O(x*x^n))))]
    { my(A=T(8)); for(n=1, #A, print(A[n])) } \\ Andrew Howroyd, Jan 13 2022

Formula

G.f.: -1 + exp(Sum_{k>=1} y^k*B(x^k)/k) where B(x) = x*(1 - 2*x + 2*x^2)/((1 - x)*(1 - 2*x)). - Andrew Howroyd, Jan 13 2022