A350647 Number T(n,k) of partitions of [n] having k blocks containing their own index when blocks are ordered with decreasing largest elements; triangle T(n,k), n>=0, 0<=k<=ceiling(n/2), read by rows.
1, 0, 1, 1, 1, 1, 3, 1, 6, 7, 2, 16, 25, 10, 1, 73, 91, 35, 4, 298, 390, 163, 25, 1, 1453, 1797, 755, 128, 7, 7366, 9069, 3919, 737, 55, 1, 40689, 49106, 21485, 4304, 380, 11, 238258, 284537, 126273, 26695, 2696, 110, 1, 1483306, 1751554, 785435, 173038, 19272, 976, 16
Offset: 0
Examples
T(4,0) = 6: 432|1, 42|31, 42|3|1, 4|31|2, 4|3|21, 4|3|2|1. T(4,1) = 7: 4321, 43|21, 43|2|1, 421|3, 4|321, 4|32|1, 41|3|2. T(4,2) = 2: 431|2, 41|32. T(5,2) = 10: 5431|2, 541|32, 531|42, 51|432, 521|4|3, 5|421|3, 5|42|31, 5|42|3|1, 51|4|32, 51|4|3|2. T(5,3) = 1: 51|42|3. Triangle T(n,k) begins: 1; 0, 1; 1, 1; 1, 3, 1; 6, 7, 2; 16, 25, 10, 1; 73, 91, 35, 4; 298, 390, 163, 25, 1; 1453, 1797, 755, 128, 7; 7366, 9069, 3919, 737, 55, 1; 40689, 49106, 21485, 4304, 380, 11; 238258, 284537, 126273, 26695, 2696, 110, 1; ...
Links
- Alois P. Heinz, Rows n = 0..200, flattened
- Wikipedia, Partition of a set
Crossrefs
Programs
-
Maple
b:= proc(n, m) option remember; expand(`if`(n=0, 1, add( `if`(j=n, x, 1)*b(n-1, max(m, j)), j=1..m+1))) end: T:= n-> (p-> seq(coeff(p, x, i), i=0..ceil(n/2)))(b(n, 0)): seq(T(n), n=0..14);
-
Mathematica
b[n_, m_] := b[n, m] = Expand[If[n == 0, 1, Sum[ If[j == n, x, 1]*b[n-1, Max[m, j]], {j, 1, m+1}]]]; T[n_] := With[{p = b[n, 0]}, Table[Coefficient[p, x, i], {i, 0, Ceiling[n/2]}]]; Table[T[n], {n, 0, 14}] // Flatten (* Jean-François Alcover, Jan 11 2022, after Alois P. Heinz *)
Formula
Sum_{k=1..ceiling(n/2)} k * T(n,k) = A350648(n).