cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A350668 Numbers congruent to 2, 4, and 6 modulo 9: positions of 2 in A159955.

Original entry on oeis.org

2, 4, 6, 11, 13, 15, 20, 22, 24, 29, 31, 33, 38, 40, 42, 47, 49, 51, 56, 58, 60, 65, 67, 69, 74, 76, 78, 83, 85, 87, 92, 94, 96, 101, 103, 105, 110, 112, 114, 119, 121, 123, 128, 130, 132, 137, 139, 141, 146, 148
Offset: 0

Views

Author

Wolfdieter Lang, Jan 29 2022

Keywords

Comments

This sequence, together with A350666 and A350667, gives a 3-set partition of the nonnegative integers.
This sequence {a(n)}_{n>=0} gives the indices of the row sequences of array A = A347834, that are modulo 6 periodic with period length 3, namely
{A347834(a(n), m) mod 6}_{m >= 0} = {repeat(3, 1, 5)}.

Examples

			Rows of array {A347834(a(n), m)}_{m >= 0}, with modulo 6 congruence:
n = 0: row 2: {3, 13, 53, 213, 853, 3413, 13653, ...} mod 6 = {repeat(3, 1, 5)},
n = 1: row 4: {9, 37, 149, 597, 2389, 9557, ...} (mod 6) = {repeat(3, 1, 5)},
...
		

Crossrefs

Programs

  • Mathematica
    Select[Range[0, 150], MemberQ[{2, 4, 6}, Mod[#, 9]] &] (* Amiram Eldar, Jan 29 2022 *)
    LinearRecurrence[{1,0,1,-1},{2,4,6,11},80] (* Harvey P. Dale, Jul 12 2024 *)

Formula

A159955(a(n)) = 2.
Trisection: a(3*k) = 2 + 9*k, a(3*k + 1) = 4 + 9*k, and a(3*k + 3) = 6 + 9*k, for k >= 0.
G.f.: (2 + 2*x + 2*x^2 + 3*x^3)/((1 - x)*(1 - x^3)).
a(n) = 1 + 3*n + cos(2*n*Pi/3) + sin(2*n*Pi/3)/sqrt(3). - Stefano Spezia, Jan 30 2022
a(n) = 1 + 3*n + S(2*n, 1) = 1+3*n+A057078(n), with the Chebyshev S polynomials from A049310, using the partial fraction decomposition of the g.f., or the previous formula.

A350666 Numbers congruent to 0, 5, and 7 modulo 9: positions of 0 in A159955.

Original entry on oeis.org

0, 5, 7, 9, 14, 16, 18, 23, 25, 27, 32, 34, 36, 41, 43, 45, 50, 52, 54, 59, 61, 63, 68, 70, 72, 77, 79, 81, 86, 88, 90, 95, 97, 99, 104, 106, 108, 113, 115, 117, 122, 124, 126, 131, 133, 135, 140, 142, 144, 149
Offset: 0

Views

Author

Wolfdieter Lang, Jan 29 2022

Keywords

Comments

This sequence, together with A350667 and A350668, gives a 3-set partition of the nonnegative integers.
This sequence {a(n)}, for n >= 1, gives the indices of the row sequences of array A = A347834, that are modulo 6 periodic with period length 3, namely: {A347834(a(n), m) mod 6}_{m >= 0} = {repeat(0, 3, 1)}.

Examples

			Rows of array {A347834(a(n), m)}_{m>=0}, with modulo 6 congruence:
n = 1: row 5: {11, 45, 181, 725, 2901, 11605,...} mod 6 = {5, 3, 1, 5, 3, 1, ...},
n = 2: row 7: {17, 69, 277, 1109, 4437, 17749, ...} mod 6 = {repeat(5, 3, 1)},
...
		

Crossrefs

Programs

  • Mathematica
    Select[Range[0, 150], MemberQ[{0, 5, 7}, Mod[#, 9]] &] (* Amiram Eldar, Jan 29 2022 *)
    Table[1 + 3n - ChebyshevU[n,-1/2],{n,0,49}] (* Stefano Spezia, Jan 30 2022 *)

Formula

A159955(a(n)) = 0.
Trisection: a(3*k) = 9*k, a(3*k+1) = 5 + 9*k, and a(3*k+2) = 7 + 9*k, for k >= 0.
G.f.: x*(5 + 2*x + 2*x^2)/((1 - x)*(1 - x^3)).
a(n) = 1 + 3*n - U(n, -1/2) = 1+3*n-A049347(n), where U(n, x) is a Chebyshev U-polynomial. - Stefano Spezia, Jan 30 2022
a(n) = 1 + 3*n - (2/sqrt(3))*sin(2*(n+1)*Pi/3) (from the previous formula).
Showing 1-2 of 2 results.