cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A350710 Triangle read by rows formed from the coefficients in ascending order of the characteristic polynomial of the n X n matrix M(n) with entries M(n)[i,j] = i*j mod n+1.

Original entry on oeis.org

1, -1, 1, -3, -2, 1, -16, -16, -2, 1, 0, 100, -10, -10, 1, -1296, 0, 324, -24, -13, 1, 0, 0, 4116, 392, -175, -14, 1, 0, -131072, 16384, 12288, -512, -352, -12, 1, 0, 0, -708588, 0, 44469, 2592, -459, -24, 1, 0, 0, 16000000, 800000, -760000, -12000, 11000, -100, -45, 1
Offset: 0

Views

Author

Luca Onnis, Mar 27 2022

Keywords

Examples

			Triangle begins:
n=0:     1;
n=1:    -1,   1;
n=2:    -3,  -2,    1;
n=3:   -16, -16,   -2,   1;
n=4:     0, 100,  -10, -10,    1;
n=5: -1296,   0,  324, -24,  -13,   1;
n=6:     0,   0, 4116, 392, -175, -14, 1;
For example, the characteristic polynomial associated to M(7) is
  q^7 - 12*q^6 - 352*q^5 - 512*q^4 + 12288*q^3 + 16384*q^2 - 131072*q + 0;
so the seventh row of the triangle is
  0, -131072, 16384, 12288, -512, -352, -12, 1.
		

Crossrefs

Cf. A352620 (matrices M).

Programs

  • Maple
    T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(LinearAlgebra[
        CharacteristicPolynomial](Matrix(n, (i, j)-> irem(i*j, n+1)), x)):
    seq(T(n), n=0..10);  # Alois P. Heinz, Mar 27 2022
  • Mathematica
    Table[(-1)^(p + 1)*CoefficientList[CharacteristicPolynomial[Table[Mod[k*Table[i, {i, 1, p - 1}], p], {k, 1, p - 1}], x], x], {p, 2, 20}]
  • PARI
    row(n) = Vecrev(charpoly(matrix(n,n,i,j,i*j%(n+1)))); \\ Kevin Ryde, Mar 27 2022