cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A351280 a(n) = Sum_{k=0..n} k! * k^k * Stirling1(n,k).

Original entry on oeis.org

1, 1, 7, 140, 5254, 318854, 28455182, 3506576856, 570360248856, 118356589567440, 30512901324706608, 9566812017770347152, 3584662956711860108352, 1581905384865801328253712, 812047187127758913474118032, 479763784808095613489811245568
Offset: 0

Views

Author

Seiichi Manyama, Feb 06 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[n_] := Sum[k! * k^k * StirlingS1[n, k], {k, 1, n}]; Array[a, 16, 0] (* Amiram Eldar, Feb 06 2022 *)
  • PARI
    a(n) = sum(k=0, n, k!*k^k*stirling(n, k, 1));
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, (k*log(1+x))^k)))

Formula

E.g.f.: Sum_{k>=0} (k * log(1+x))^k.
a(n) ~ exp(-exp(-1)/2) * n! * n^n. - Vaclav Kotesovec, Feb 06 2022

A350726 a(n) = Sum_{k=0..n} k^(n-k) * Stirling1(n,k).

Original entry on oeis.org

1, 1, 0, -3, 21, -100, -525, 33026, -860503, 16304464, -100885935, -12798492630, 1037135603845, -55556702499792, 2207903148318777, -31916679640973750, -6164889702150516015, 983802138243128355456, -100629406324320358067423
Offset: 0

Views

Author

Seiichi Manyama, Feb 03 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[n_] := Sum[k^(n - k) * StirlingS1[n, k], {k, 1, n}]; Array[a, 19, 0] (* Amiram Eldar, Feb 03 2022 *)
  • PARI
    a(n) = sum(k=0, n, k^(n-k)*stirling(n, k, 1));
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, log(1+k*x)^k/(k!*k^k))))

Formula

E.g.f.: Sum_{k>=0} log(1 + k*x)^k / (k! * k^k).
Showing 1-2 of 2 results.