cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A351180 a(n) = Sum_{k=0..n} k^(k+n) * Stirling1(n,k).

Original entry on oeis.org

1, 1, 15, 635, 53112, 7367444, 1529130770, 443685287576, 171495189203456, 85174828026304824, 52856314387144232184, 40077340463437963801752, 36457068309928364981668848, 39186634107857517367884040632
Offset: 0

Views

Author

Seiichi Manyama, Feb 04 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[n_] := Sum[k^(k + n) * StirlingS1[n, k], {k, 1, n}]; Array[a, 14, 0] (* Amiram Eldar, Feb 04 2022 *)
  • PARI
    a(n) = sum(k=0, n, k^(k+n)*stirling(n, k, 1));
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, (k*log(1+k*x))^k/k!)))

Formula

E.g.f.: Sum_{k>=0} (k * log(1 + k*x))^k / k!.
a(n) ~ c * d^n * n^(2*n), where d = 0.9315722818790917570256960813246568629715677803436281996798798428122211769... and c = 1.07238575181275524934156216072811545518508724720534339814911465361... - Vaclav Kotesovec, Feb 18 2022

A350725 a(n) = Sum_{k=0..n} k! * k^(n-k) * Stirling1(n,k).

Original entry on oeis.org

1, 1, 1, -4, -2, 274, -3442, -12552, 2108664, -63083232, 87416112, 112192496976, -7487840132544, 174521224997040, 19793498724358032, -3109195219736188416, 209306170972547346816, 2973238556525799866496, -3013574861684426837113728, 456220653756733889826621696
Offset: 0

Views

Author

Seiichi Manyama, Feb 03 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[n_] := Sum[k! * k^(n-k) * StirlingS1[n, k], {k, 1, n}]; Array[a, 20, 0] (* Amiram Eldar, Feb 03 2022 *)
  • PARI
    a(n) = sum(k=0, n, k!*k^(n-k)*stirling(n, k, 1));
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, log(1+k*x)^k/k^k)))

Formula

E.g.f.: Sum_{k>=0} log(1 + k*x)^k / k^k.
Showing 1-2 of 2 results.