A350731 Triangle read by rows: T(n,k) is the number of strongly connected oriented graphs on n labeled nodes with k arcs, n >= 1, k=0..n*(n-1)/2.
1, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 6, 36, 24, 0, 0, 0, 0, 0, 24, 480, 1940, 2970, 2040, 544, 0, 0, 0, 0, 0, 0, 120, 5040, 51330, 221910, 527940, 772080, 722250, 426420, 146160, 22320, 0, 0, 0, 0, 0, 0, 0, 720, 52920, 1026060, 8810970, 43268442, 138984510
Offset: 1
Examples
Triangle begins: [1] 1; [2] 0, 0; [3] 0, 0, 0, 2; [4] 0, 0, 0, 0, 6, 36, 24; [5] 0, 0, 0, 0, 0, 24, 480, 1940, 2970, 2040, 544; ...
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1350 (rows 1..20)
Crossrefs
Programs
-
PARI
OrientedGgf(n, y=1) = {sum(k=0, n, ((1+2*y)/(1+y))^(k*(k-1)/2)*x^k/k!, O(x*x^n) )} StrongO(n, y=1) = {my(g=serconvol(1/OrientedGgf(n,y), sum(k=0, n, x^k*(1+y)^(k*(k-1)/2), O(x*x^n)))); Vec(serlaplace(-log(g)))} row(n)={Vecrev(StrongO(n,'y)[n], n*(n-1)/2+1)} { for(n=1, 6, print(row(n))) }