cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A350734 Triangle read by rows: T(n,k) is the number of weakly connected oriented graphs on n unlabeled nodes with k arcs, n >= 1, k = 0..n*(n-1)/2.

Original entry on oeis.org

1, 0, 1, 0, 0, 3, 2, 0, 0, 0, 8, 12, 10, 4, 0, 0, 0, 0, 27, 68, 127, 144, 107, 50, 12, 0, 0, 0, 0, 0, 91, 395, 1144, 2393, 3767, 4500, 4112, 2740, 1274, 376, 56, 0, 0, 0, 0, 0, 0, 350, 2170, 9139, 28606, 71583, 145600, 244589, 339090, 387458, 361394, 271177, 159872, 71320, 22690, 4604, 456
Offset: 1

Views

Author

Andrew Howroyd, Jan 13 2022

Keywords

Examples

			Triangle begins:
  [1] 1;
  [2] 0, 1;
  [3] 0, 0, 3, 2;
  [4] 0, 0, 0, 8, 12, 10,   4;
  [5] 0, 0, 0, 0, 27, 68, 127, 144, 107, 50, 12;
  ...
		

Crossrefs

Row sums are A086345.
Column sums are A350915.
Leading diagonal is A000238.
The labeled version is A350732.
Cf. A054733, A350733, A350750, A350914 (transpose).

Programs

  • PARI
    InvEulerMTS(p)={my(n=serprec(p,x)-1, q=log(p), vars=variables(p)); sum(i=1, n, moebius(i)*substvec(q + O(x*x^(n\i)), vars, apply(v->v^i,vars))/i)}
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    edges(v, t) = {prod(i=2, #v, prod(j=1, i-1, my(g=gcd(v[i], v[j])); t(v[i]*v[j]/g)^g )) * prod(i=1, #v, my(c=v[i]); t(c)^((c-1)\2))}
    G(n, x)={my(s=0); forpart(p=n, s+=permcount(p)*edges(p, i->1+2*x^i)); s/n!}
    row(n)={Vecrev(polcoef(InvEulerMTS(sum(i=0, n, G(i, y)*x^i, O(x*x^n))), n))}
    { for(n=1, 6, print(row(n))) }

A350750 Triangle read by rows: T(n,k) is the number of strongly connected oriented graphs on n unlabeled nodes with k arcs, n >= 1, k = 0..n*(n-1)/2.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 2, 1, 0, 0, 0, 0, 0, 1, 5, 18, 27, 19, 6, 0, 0, 0, 0, 0, 0, 1, 8, 80, 333, 765, 1122, 1049, 622, 217, 35, 0, 0, 0, 0, 0, 0, 0, 1, 12, 221, 1875, 8971, 28449, 63845, 105556, 130935, 122607, 85926, 43868, 15506, 3403, 353
Offset: 1

Views

Author

Andrew Howroyd, Jan 13 2022

Keywords

Examples

			Triangle begins:
  [1] 1;
  [2] 0, 0;
  [3] 0, 0, 0, 1;
  [4] 0, 0, 0, 0, 1, 2, 1;
  [5] 0, 0, 0, 0, 0, 1, 5, 18, 27,  19,   6;
  [6] 0, 0, 0, 0, 0, 0, 1,  8, 80, 333, 765, 1122, 1049, 622, 217, 35;
  ...
		

Crossrefs

Row sums are A350489.
Column sums are A350751.
The labeled version is A350731.
Cf. A057276 (digraphs), A350733, A350734.

Programs

  • PARI
    \\ See PARI link in A350489 for program code.
    { my(A=A350750rows(7)); for(n=1, #A, print(A[n])) }

A350749 Triangle read by rows: T(n,k) is the number of oriented graphs on n labeled nodes with k arcs, n >= 0, k = 0..n*(n-1)/2.

Original entry on oeis.org

1, 1, 1, 2, 1, 6, 12, 8, 1, 12, 60, 160, 240, 192, 64, 1, 20, 180, 960, 3360, 8064, 13440, 15360, 11520, 5120, 1024, 1, 30, 420, 3640, 21840, 96096, 320320, 823680, 1647360, 2562560, 3075072, 2795520, 1863680, 860160, 245760, 32768
Offset: 0

Views

Author

Andrew Howroyd, Feb 15 2022

Keywords

Examples

			Triangle begins:
  [0] 1;
  [1] 1;
  [2] 1,  2;
  [3] 1,  6,  12,   8;
  [4] 1, 12,  60, 160,  240,  192,    64;
  [5] 1, 20, 180, 960, 3360, 8064, 13440, 15360, 11520, 5120, 1024;
  ...
		

Crossrefs

Row sums are A047656.
The unlabeled version is A350733.
Cf. A013609, A350732 (weakly connected), A350731 (strongly connected).

Programs

  • PARI
    T(n,k) = 2^k * binomial(n*(n-1)/2, k)
    
  • PARI
    row(n) = {Vecrev((1+2*y)^(n*(n-1)/2))}
    { for(n=0, 6, print(row(n))) }

Formula

T(n,k) = 2^k * binomial(n*(n-1)/2, k) = A013609(n*(n-1)/2, k).
T(n,k) = [y^k] (1+2*y)^(n*(n-1)/2).
Showing 1-3 of 3 results.