cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A046952 Sets record for f(n) = |{(a,b):a*b=n and a|b}|. Also squares of highly composite numbers A002182.

Original entry on oeis.org

1, 4, 16, 36, 144, 576, 1296, 2304, 3600, 14400, 32400, 57600, 129600, 518400, 705600, 1587600, 2822400, 6350400, 25401600, 57153600, 101606400, 228614400, 406425600, 635040000, 768398400, 2057529600, 2540160000, 3073593600
Offset: 1

Views

Author

Simon Colton (simonco(AT)cs.york.ac.uk)

Keywords

Comments

Invented by the HR automatic theory formation program.
Also, integers whose number of square divisors sets a new record. - Bernard Schott, Jan 14 2022
As a(n) is the square of n-th highly composite number (A002182), the record number of square divisors of a(n) is A046951(a(n)) = tau(A002182(n)) = A002183(n) where tau is the divisor counting function (A000005). - Bernard Schott, Jan 15 2022
Integers m for which number of solutions (A353282) to the Diophantine equation S(x,y) = (x+y) + (x-y) + (x*y) + (x/y) = m sets a new record; these records are respectively 0, 1, 2, 3, 5, 7, ... Example: the 5 solutions for S(x,y) = 144 are (36,1), (32,2), (27,3), (20,5), (11,11). - Bernard Schott, Apr 19 2022

Examples

			f(1)=1, (first with 1), f(4)=2 (first with 2), f(16)=3 (first with 3).
		

Crossrefs

Cf. A350756 (similar, with triangular divisors).

Formula

a(n) = A002182(n)^2. - Bernard Schott, Jan 14 2022

A356020 Positions of records in A356018, i.e., integers whose number of evil divisors sets a new record.

Original entry on oeis.org

1, 3, 6, 12, 18, 30, 60, 90, 120, 180, 360, 540, 720, 1080, 1440, 2160, 3780, 4320, 6120, 7560, 8640, 12240, 15120, 24480, 27720, 30240, 36720, 48960, 50400, 55440, 73440, 83160, 110880, 128520, 138600, 166320, 221760, 257040, 277200, 332640, 471240, 514080, 554400
Offset: 1

Views

Author

Bernard Schott, Jul 24 2022

Keywords

Comments

Corresponding records of number of evil divisors are 0, 1, 2, 3, 4, 6, 9, 10, 12, 15, ...

Examples

			60 is in the sequence because A356018(60) = 9 is larger than any earlier value in A356018.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := DivisorSum[n, 1 &, EvenQ[DigitCount[#, 2, 1]] &]; fm = -1; s = {}; Do[If[(fn = f[n]) > fm, fm = fn; AppendTo[s, n]], {n, 1, 10^5}]; s (* Amiram Eldar, Jul 24 2022 *)
  • PARI
    upto(n) = my(res = List(), r=-1); forfactored(i=1, n, if(numdiv(i[2]) > r, d = divisors(i[2]); c=sum(j=1, #d, isevil(d[j])); if(c>r, r=c; listput(res,i[1])))); res
    isevil(n) = bitand(hammingweight(n), 1)==0 \\ David A. Corneth, Jul 24 2022
    
  • Python
    from sympy import divisors
    from itertools import count, islice
    def c(n): return bin(n).count("1")&1 == 0
    def f(n): return sum(1 for d in divisors(n, generator=True) if c(d))
    def agen(record=-1):
        for k in count(1):
            if f(k) > record: record = f(k); yield k
    print(list(islice(agen(), 40))) # Michael S. Branicky, Jul 24 2022

Extensions

More terms from Amiram Eldar, Jul 24 2022

A355304 Integers whose number of normal undulating divisors sets a new record.

Original entry on oeis.org

1, 2, 4, 6, 12, 24, 36, 48, 60, 120, 180, 240, 360, 720, 1080, 1260, 1440, 1680, 2160, 2520, 5040, 7560, 10080, 15120, 21840, 28080, 32760, 56160, 65520, 98280, 131040, 196560, 393120, 589680, 786240, 1113840, 1670760, 2227680, 3341520, 6683040, 13366080, 20049120
Offset: 1

Views

Author

Bernard Schott, Jun 30 2022

Keywords

Comments

Normal undulating integers are in A355301.
The first 14 terms are also the first 14 highly composite numbers in A002182, then A002182(15) = 840 while a(15) = 1080. Indeed, 840 is the smallest integer that has 32 divisors of which only 28 are normal undulating integers, while 1080 has also 32 divisors of which 30 are normal undulating integers.
Corresponding records of number of normal undulating divisors are 1, 2, 3, 4, 6, 8, 9, 10, 12, ...

Examples

			a(6) = 24 is in the sequence because A355302(24) is larger than any earlier value in A355302.
		

Crossrefs

Similar, but with divisors that are: A046952 (squares), A053624 (odd), A181808 (even), A093036 (palindromes), A340548 (repdigits), A340549 (repunits), A350756 (triangular).

Programs

  • Mathematica
    nuQ[n_] := AllTrue[(s = Sign[Differences[IntegerDigits[n]]]), # != 0 &] && AllTrue[Differences[s], # != 0 &]; dm = -1; seq = {}; Do[If[(d = DivisorSum[n, 1 &, nuQ[#] &]) > dm, dm = d; AppendTo[seq, n]], {n, 1, 10^5}]; seq (* Amiram Eldar, Jun 30 2022 *)

Extensions

More terms from Amiram Eldar, Jun 30 2022

A356179 Positions of records in A279497, i.e., integers whose number of pentagonal divisors sets a new record.

Original entry on oeis.org

1, 5, 35, 70, 210, 420, 2310, 4620, 18480, 32340, 60060, 120120, 240240, 720720, 1141140, 2042040, 4084080, 4564560, 13693680, 19399380, 38798760, 77597520, 232792560, 387987600
Offset: 1

Views

Author

Bernard Schott, Jul 28 2022

Keywords

Comments

The first fourteen terms are the same as A356132; then a(15) = 1141140 while A356132(15) = 1261260.
Corresponding records of number of pentagonal divisors are 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, ...

Examples

			210 is in the sequence because A279497(210) = 5 is larger than any earlier value in A279497.
		

Crossrefs

Similar sequences: A046952, A093036, A350756, A355595.

Programs

  • Mathematica
    f[n_] := DivisorSum[n, 1 &, IntegerQ[(1 + Sqrt[1 + 24*#])/6] &]; fm = -1; s = {}; Do[If[(fn = f[n]) > fm, fm = fn; AppendTo[s, n]], {n, 1, 10^5}]; s (* Amiram Eldar, Jul 28 2022 *)
  • PARI
    lista(nn) = my(m=0); for (n=1, nn, my(new = sumdiv(n, d, ispolygonal(d, 5))); if (new > m, m = new; print1(n, ", "));); \\ Michel Marcus, Jul 28 2022

Extensions

a(23)-a(24) from David A. Corneth, Jul 28 2022
Showing 1-4 of 4 results.