A350770 Triangle read by rows: T(n, k) = 2^(n-k-1) + 2^k - 2, 0 <= k <= n-1.
0, 1, 1, 3, 2, 3, 7, 4, 4, 7, 15, 8, 6, 8, 15, 31, 16, 10, 10, 16, 31, 63, 32, 18, 14, 18, 32, 63, 127, 64, 34, 22, 22, 34, 64, 127, 255, 128, 66, 38, 30, 38, 66, 128, 255, 511, 256, 130, 70, 46, 46, 70, 130, 256, 511, 1023, 512, 258, 134, 78, 62, 78, 134, 258, 512, 1023, 2047, 1024, 514, 262, 142, 94, 94, 142, 262, 514, 1024, 2047
Offset: 1
Examples
Triangle begins: 0; 1, 1; 3, 2, 3; 7, 4, 4, 7; 15, 8, 6, 8, 15; 31, 16, 10, 10, 16, 31; 63, 32, 18, 14, 18, 32, 63; 127, 64, 34, 22, 22, 34, 64, 127; 255, 128, 66, 38, 30, 38, 66, 128, 255; 511, 256, 130, 70, 46, 46, 70, 130, 256, 511; 1023, 512, 258, 134, 78, 62, 78, 134, 258, 512, 1023; 2047, 1024, 514, 262, 142, 94, 94, 142, 262, 514, 1024, 2047; ...
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1275 (rows 1..50).
- Ambrosio Valencia-Romero, Strategy Dynamics in Collective Systems Design, Ph.D. Thesis, Stevens Institute of Technology (Hoboken, 2021). [Table 5.4, page 67]
- Ambrosio Valencia-Romero and P. T. Grogan, The strategy dynamics of collective systems: Underlying hindrances beyond two-actor coordination, PLOS ONE 19(4): e0301394 (S1 Appendix).
Programs
-
Maple
T := n -> seq(2^(n - k - 1) + 2^k - 2, k = 0 .. n - 1); seq(T(n), n=1..12);
-
PARI
T(n, k) = 2^(n-k-1) + 2^k - 2 \\ Andrew Howroyd, May 06 2023
Formula
T(n, k) = 2^(n-k-1) + 2^k - 2.
Comments