cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A350771 Triangle read by rows: T(n, k) = (2^(n-k-1) + 2^k - 2)*binomial(n-1, k), 0 <= k <= n-1.

Original entry on oeis.org

0, 1, 1, 3, 4, 3, 7, 12, 12, 7, 15, 32, 36, 32, 15, 31, 80, 100, 100, 80, 31, 63, 192, 270, 280, 270, 192, 63, 127, 448, 714, 770, 770, 714, 448, 127, 255, 1024, 1848, 2128, 2100, 2128, 1848, 1024, 255, 511, 2304, 4680, 5880, 5796, 5796, 5880, 4680, 2304, 511, 1023, 5120, 11610, 16080, 16380, 15624, 16380, 16080, 11610, 5120, 1023
Offset: 1

Views

Author

Keywords

Comments

The elements in T(n,k) result from the product of each element of A350770(n,k) and binomial(n-1,k).

Examples

			Triangle begins:
     0;
     1,    1;
     3,    4,     3;
     7,   12,    12,     7;
    15,   32,    36,    32,    15;
    31,   80,   100,   100,    80,    31;
    63,  192,   270,   280,   270,   192,    63;
   127,  448,   714,   770,   770,   714,   448,   127;
   255, 1024,  1848,  2128,  2100,  2128,  1848,  1024,   255;
   511, 2304,  4680,  5880,  5796,  5796,  5880,  4680,  2304,  511;
  1023, 5120, 11610, 16080, 16380, 15624, 16380, 16080, 11610, 5120, 1023;
...
		

Crossrefs

Column k=0 gives A000225(n-1).
Row sums give A056182(n-1) = 2*A001047(n-1).

Programs

  • Maple
    T := n -> local k; seq((2^(n - k - 1) + 2^k - 2)*binomial(n - 1, k), k = 0 .. n - 1);
    seq(T(n), n = 1 .. 11);
  • PARI
    T(n, k) = (2^(n-k-1) + 2^k - 2)*binomial(n-1, k) \\ Andrew Howroyd, Jan 05 2024

Formula

T(n, k) = (2^(n-k-1) + 2^k - 2)*binomial(n-1, k).