A350771 Triangle read by rows: T(n, k) = (2^(n-k-1) + 2^k - 2)*binomial(n-1, k), 0 <= k <= n-1.
0, 1, 1, 3, 4, 3, 7, 12, 12, 7, 15, 32, 36, 32, 15, 31, 80, 100, 100, 80, 31, 63, 192, 270, 280, 270, 192, 63, 127, 448, 714, 770, 770, 714, 448, 127, 255, 1024, 1848, 2128, 2100, 2128, 1848, 1024, 255, 511, 2304, 4680, 5880, 5796, 5796, 5880, 4680, 2304, 511, 1023, 5120, 11610, 16080, 16380, 15624, 16380, 16080, 11610, 5120, 1023
Offset: 1
Examples
Triangle begins: 0; 1, 1; 3, 4, 3; 7, 12, 12, 7; 15, 32, 36, 32, 15; 31, 80, 100, 100, 80, 31; 63, 192, 270, 280, 270, 192, 63; 127, 448, 714, 770, 770, 714, 448, 127; 255, 1024, 1848, 2128, 2100, 2128, 1848, 1024, 255; 511, 2304, 4680, 5880, 5796, 5796, 5880, 4680, 2304, 511; 1023, 5120, 11610, 16080, 16380, 15624, 16380, 16080, 11610, 5120, 1023; ...
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1275 (rows 1..50)
- Ambrosio Valencia-Romero and P. T. Grogan, The strategy dynamics of collective systems: Underlying hindrances beyond two-actor coordination, PLOS ONE 19(4): e0301394 (S1 Appendix).
Programs
-
Maple
T := n -> local k; seq((2^(n - k - 1) + 2^k - 2)*binomial(n - 1, k), k = 0 .. n - 1); seq(T(n), n = 1 .. 11);
-
PARI
T(n, k) = (2^(n-k-1) + 2^k - 2)*binomial(n-1, k) \\ Andrew Howroyd, Jan 05 2024
Formula
T(n, k) = (2^(n-k-1) + 2^k - 2)*binomial(n-1, k).
Comments