cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A350791 Triangle read by rows: T(n,k) is the number of digraphs on n labeled nodes with k arcs and a global source and sink, n >= 1, k = 0..max(1,n-1)*(n-2)+1.

Original entry on oeis.org

1, 0, 2, 0, 0, 6, 6, 0, 0, 0, 24, 132, 180, 84, 12, 0, 0, 0, 0, 120, 1800, 8000, 16160, 18180, 12580, 5560, 1560, 260, 20, 0, 0, 0, 0, 0, 720, 22320, 214800, 999450, 2764650, 5125380, 6844380, 6882150, 5355750, 3277200, 1586520, 605370, 179250, 39900, 6300, 630, 30
Offset: 1

Views

Author

Andrew Howroyd, Jan 16 2022

Keywords

Examples

			Triangle begins:
  [1] 1;
  [2] 0, 2;
  [3] 0, 0, 6, 6;
  [4] 0, 0, 0, 24, 132, 180, 84, 12;
  ...
		

Crossrefs

Row sums are A350790.
The unlabeled version is A350795.

Programs

  • PARI
    \\ Following Eqn 21 in the Robinson reference.
    Z(p,f)={my(n=serprec(p,x)); serconvol(p, sum(k=0, n-1, x^k*f(k), O(x^n)))}
    G(e,p)={Z(p, k->1/e^(k*(k-1)/2))}
    U(e,p)={Z(p, k->e^(k*(k-1)/2))}
    DigraphEgf(n,e)={sum(k=0, n, e^(k*(k-1))*x^k/k!, O(x*x^n) )}
    StrongD(n,e=2)={-log(U(e, 1/G(e, DigraphEgf(n, e))))}
    InitFinallyV(n, e=2)={my(S=StrongD(n, e)); Vec(serlaplace( x - x^2 + exp(S) * U(e, G(e, x*exp(-S))^2*G(e, DigraphEgf(n,e))) ))}
    row(n)={Vecrev(InitFinallyV(n, 1+'y)[n]) }
    { for(n=1, 5, print(row(n))) }