cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A057271 Triangle T(n,k) of number of digraphs with a source and a sink on n labeled nodes and k arcs, k=0,1,..,n*(n-1).

Original entry on oeis.org

1, 0, 2, 1, 0, 0, 6, 20, 15, 6, 1, 0, 0, 0, 24, 234, 672, 908, 792, 495, 220, 66, 12, 1, 0, 0, 0, 0, 120, 2544, 16880, 55000, 111225, 161660, 183006, 167660, 125945, 77520, 38760, 15504, 4845, 1140, 190, 20, 1
Offset: 1

Views

Author

Vladeta Jovovic, Goran Kilibarda, Sep 14 2000

Keywords

Examples

			Triangle starts:
[1] 1;
[2] 0,2,1;
[3] 0,0,6,20,15,6,1;
[4] 0,0,0,24,234,672,908,792,495,220,66,12,1;
  ...
The number of digraphs with a source and a sink on 3 labeled nodes is 48 = 6+20+15+6+1.
		

References

  • V. Jovovic, G. Kilibarda, Enumeration of labeled initially-finally connected digraphs, Scientific review, Serbian Scientific Society, 19-20 (1996), p. 245.

Crossrefs

Row sums give A049524.
The unlabeled version is A057278.

Programs

  • PARI
    \\ Following Eqn 20 in the Robinson reference.
    Z(p,f)={my(n=serprec(p,x)); serconvol(p, sum(k=0, n-1, x^k*f(k), O(x^n)))}
    G(e,p)={Z(p, k->1/e^(k*(k-1)/2))}
    U(e,p)={Z(p, k->e^(k*(k-1)/2))}
    DigraphEgf(n,e)={sum(k=0, n, e^(k*(k-1))*x^k/k!, O(x*x^n) )}
    StrongD(n,e=2)={-log(U(e, 1/G(e, DigraphEgf(n, e))))}
    InitFinally(n, e=2)={my(S=StrongD(n, e)); Vec(serlaplace( S - S^2 + exp(S) * U(e, G(e, S*exp(-S))^2*G(e, DigraphEgf(n,e))) ))}
    row(n)={Vecrev(InitFinally(n, 1+'y)[n]) }
    { for(n=1, 5, print(row(n))) } \\ Andrew Howroyd, Jan 16 2022

A350795 Triangle read by rows: T(n,k) is the number of digraphs on n unlabeled nodes with k arcs and a global source and sink, n >= 1, k = 0..max(1,n-1)*(n-2)+1.

Original entry on oeis.org

1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 6, 8, 4, 1, 0, 0, 0, 0, 1, 16, 70, 140, 159, 113, 53, 17, 4, 1, 0, 0, 0, 0, 0, 1, 33, 313, 1439, 3941, 7297, 9750, 9840, 7717, 4788, 2377, 946, 309, 80, 18, 4, 1, 0, 0, 0, 0, 0, 0, 1, 58, 998, 8447, 43269, 152135, 396011
Offset: 1

Views

Author

Andrew Howroyd, Jan 21 2022

Keywords

Examples

			Triangle begins:
  [1] 1;
  [2] 0, 1;
  [3] 0, 0, 1, 1;
  [4] 0, 0, 0, 1, 6,  8,  4,   1;
  [5] 0, 0, 0, 0, 1, 16, 70, 140, 159, 113, 53, 17, 4, 1;
  ...
		

Crossrefs

Row sums are A350794.
Column sums are A350796.
The labeled version is A350791.

Programs

  • PARI
    \\ See PARI link in A350794 for program code.
    { my(A=A350795triang(5)); for(n=1, #A, print(A[n])) }

A350790 Number of digraphs on n labeled nodes with a global source and sink.

Original entry on oeis.org

1, 2, 12, 432, 64240, 33904800, 61721081184, 394586260943616, 9146766152111641344, 792073976107698469670400, 261895415169919230764987845120, 335402460348866803020064114666616832, 1678893205649791601327398844631544110815232
Offset: 1

Views

Author

Andrew Howroyd, Jan 16 2022

Keywords

Comments

This sequence differs from A049524 in that the source and sink are restricted to being single nodes.

Crossrefs

The unlabeled version is A350794.
Row sums of A350791.

Programs

  • Mathematica
    nn = 15; strong = Select[Import["https://oeis.org/A003030/b003030.txt", "Table"],
       Length@# == 2 &][[All, 2]]; s[z_] := Total[strong Table[z^i/i!, {i, 1, 58}]];
    ggf[egf_] := Normal[Series[egf, {z, 0, nn}]] /. Table[z^i -> z^i/2^Binomial[i, 2], {i, 1, nn + 1}];egf[ggf_] := Normal[Series[ggf, {z, 0, nn}]] /.Table[z^i -> z^i*2^Binomial[i, 2], {i, 1, nn + 1}];Table[n!, {n, 0, nn}] CoefficientList[
    Series[z - z^2 + Exp[(u - 1) (v - 1) s[ z]] egf[ggf[z Exp[(u - 1) s[z]]]*1/ggf[Exp[-s[z]]]*ggf[z Exp[(v - 1) s[ z]]]] /. {u -> 0, v -> 0}, {z, 0, nn}], z] (* Geoffrey Critzer, Apr 17 2023 *)
  • PARI
    InitFinallyV(12) \\ See A350791 for program code.

Formula

For n >= 3, a(n) = 2*n*(n-1)*A003030(n-1) (Robinson equation 22). - Geoffrey Critzer, Apr 17 2023

A350793 Triangle read by rows: T(n,k) is the number of digraphs on n labeled nodes with k arcs and a global source (or sink), n >= 1, k = 0..(n-1)^2.

Original entry on oeis.org

1, 0, 2, 0, 0, 9, 12, 3, 0, 0, 0, 64, 252, 396, 320, 144, 36, 4, 0, 0, 0, 0, 625, 4860, 17060, 35900, 50775, 51300, 38340, 21540, 9075, 2800, 600, 80, 5, 0, 0, 0, 0, 0, 7776, 99720, 603720, 2300310, 6206730, 12654384, 20310840, 26385240, 28273620, 25302960
Offset: 1

Views

Author

Andrew Howroyd, Jan 17 2022

Keywords

Examples

			Triangle begins:
  [1] 1;
  [2] 0, 2;
  [3] 0, 0, 9, 12, 3;
  [4] 0, 0, 0, 64, 252, 396, 320, 144, 36, 4;
  ...
		

Crossrefs

Row sums are A350792.
The leading diagonal is A000169.
The unlabeled version is A350797.

Programs

  • PARI
    InitiallyV(n, e=2)={my(v=vector(n)); for(n=1, n, v[n] = n*e^((n-1)^2) - sum(k=1, n-1, binomial(n,k)*e^((n-2)*(n-k))*v[k])); v}
    row(n)={Vecrev(InitiallyV(n, 1+'y)[n])}
    { for(n=1, 5, print(row(n))) }
Showing 1-4 of 4 results.