cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A350792 Number of digraphs on n labeled nodes with a global source (or sink).

Original entry on oeis.org

1, 2, 24, 1216, 232960, 164069376, 428074336256, 4220285062479872, 160166476125189439488, 23705806454651474422005760, 13794322751716126282614505996288, 31714534285699906476309208596247216128, 288989543377657933541050197425959169851129856
Offset: 1

Views

Author

Andrew Howroyd, Jan 16 2022

Keywords

Comments

A global sink is a node that has out-degree zero and to which all other nodes have a directed path.

Crossrefs

The unlabeled version is A350360.
Row sums of A350793.

Programs

  • PARI
    InitiallyV(15) \\ See A350793 for program code.
    
  • PARI
    seq(n)={my(v=vector(n)); for(n=1, n, v[n] = n*2^((n-1)^2) - sum(k=1, n-1, binomial(n,k)*2^((n-2)*(n-k))*v[k])); v}

Formula

a(n) = n*2^((n-1)^2) - Sum_{k=1..n-1} binomial(n,k)*2^((n-2)*(n-k))*a(k).

A350797 Triangle read by rows: T(n,k) is the number of digraphs on n unlabeled nodes with k arcs and a global source (or sink), n >= 1, k = 0..(n-1)^2.

Original entry on oeis.org

1, 0, 1, 0, 0, 2, 2, 1, 0, 0, 0, 4, 11, 19, 15, 8, 2, 1, 0, 0, 0, 0, 9, 45, 157, 319, 453, 455, 352, 199, 93, 32, 9, 2, 1, 0, 0, 0, 0, 0, 20, 167, 928, 3395, 9015, 18172, 29089, 37688, 40446, 36267, 27476, 17560, 9543, 4354, 1688, 547, 157, 36, 9, 2, 1
Offset: 1

Views

Author

Andrew Howroyd, Jan 21 2022

Keywords

Examples

			Triangle begins:
  [1] 1;
  [2] 0, 1;
  [3] 0, 0, 2, 2,  1;
  [4] 0, 0, 0, 4, 11, 19, 15, 8, 2, 1;
  ...
		

Crossrefs

Row sums are A350360.
Column sums are A350798.
The leading diagonal is A000081.
The labeled version is A350793.

Programs

  • PARI
    \\ See PARI link in A350794 for program code.
    { my(A=A350797triang(5)); for(n=1, #A, print(A[n])) }

A350791 Triangle read by rows: T(n,k) is the number of digraphs on n labeled nodes with k arcs and a global source and sink, n >= 1, k = 0..max(1,n-1)*(n-2)+1.

Original entry on oeis.org

1, 0, 2, 0, 0, 6, 6, 0, 0, 0, 24, 132, 180, 84, 12, 0, 0, 0, 0, 120, 1800, 8000, 16160, 18180, 12580, 5560, 1560, 260, 20, 0, 0, 0, 0, 0, 720, 22320, 214800, 999450, 2764650, 5125380, 6844380, 6882150, 5355750, 3277200, 1586520, 605370, 179250, 39900, 6300, 630, 30
Offset: 1

Views

Author

Andrew Howroyd, Jan 16 2022

Keywords

Examples

			Triangle begins:
  [1] 1;
  [2] 0, 2;
  [3] 0, 0, 6, 6;
  [4] 0, 0, 0, 24, 132, 180, 84, 12;
  ...
		

Crossrefs

Row sums are A350790.
The unlabeled version is A350795.

Programs

  • PARI
    \\ Following Eqn 21 in the Robinson reference.
    Z(p,f)={my(n=serprec(p,x)); serconvol(p, sum(k=0, n-1, x^k*f(k), O(x^n)))}
    G(e,p)={Z(p, k->1/e^(k*(k-1)/2))}
    U(e,p)={Z(p, k->e^(k*(k-1)/2))}
    DigraphEgf(n,e)={sum(k=0, n, e^(k*(k-1))*x^k/k!, O(x*x^n) )}
    StrongD(n,e=2)={-log(U(e, 1/G(e, DigraphEgf(n, e))))}
    InitFinallyV(n, e=2)={my(S=StrongD(n, e)); Vec(serlaplace( x - x^2 + exp(S) * U(e, G(e, x*exp(-S))^2*G(e, DigraphEgf(n,e))) ))}
    row(n)={Vecrev(InitFinallyV(n, 1+'y)[n]) }
    { for(n=1, 5, print(row(n))) }
Showing 1-3 of 3 results.