A350793 Triangle read by rows: T(n,k) is the number of digraphs on n labeled nodes with k arcs and a global source (or sink), n >= 1, k = 0..(n-1)^2.
1, 0, 2, 0, 0, 9, 12, 3, 0, 0, 0, 64, 252, 396, 320, 144, 36, 4, 0, 0, 0, 0, 625, 4860, 17060, 35900, 50775, 51300, 38340, 21540, 9075, 2800, 600, 80, 5, 0, 0, 0, 0, 0, 7776, 99720, 603720, 2300310, 6206730, 12654384, 20310840, 26385240, 28273620, 25302960
Offset: 1
Examples
Triangle begins: [1] 1; [2] 0, 2; [3] 0, 0, 9, 12, 3; [4] 0, 0, 0, 64, 252, 396, 320, 144, 36, 4; ...
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..2490 (rows 1..20)
Crossrefs
Programs
-
PARI
InitiallyV(n, e=2)={my(v=vector(n)); for(n=1, n, v[n] = n*e^((n-1)^2) - sum(k=1, n-1, binomial(n,k)*e^((n-2)*(n-k))*v[k])); v} row(n)={Vecrev(InitiallyV(n, 1+'y)[n])} { for(n=1, 5, print(row(n))) }