cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A350810 a(n) = ceiling((n-R(n^2))^2/(n+R(n^2))), where R(n^2) is the digit reversal of n^2.

Original entry on oeis.org

0, 1, 3, 50, 39, 48, 75, 27, 3, 8, 92, 407, 923, 651, 479, 606, 933, 372, 114, 11, 92, 422, 859, 607, 456, 602, 850, 410, 81, 12, 96, 4106, 9703, 6410, 5117, 6814, 9521, 4329, 1139, 5, 1742, 4547, 9353, 6261, 5069, 5976, 8882, 3891, 904, 1, 919, 3919, 8925, 6032, 5041, 6147, 9254
Offset: 1

Views

Author

Claude H. R. Dequatre, Jan 17 2022

Keywords

Comments

This sequence gives both at large and small scales well-structured graphs; specific and periodic patterns are visible in separated layers.

Examples

			For n = 1, R(n^2) = 1, thus a(1) = ceiling((1-1)^2/(1+1)) = 0.
For n = 10, R(n^2) = 1, thus a(10) = ceiling((10-1)^2/(10+1)) = 8.
For n = 21, R(n^2) = 144, thus a(21) = ceiling((21-144)^2/(21+144)) = 92.
		

Crossrefs

Programs

  • Mathematica
    Table[Ceiling[(n-FromDigits[Reverse[IntegerDigits[n^2]]])^2/(n+FromDigits[Reverse[IntegerDigits[n^2]]])],{n,57}] (* Stefano Spezia, Jan 18 2022 *)
  • PARI
    a(n) = my(x = fromdigits(Vecrev(digits(n^2))));r = ceil((n-x)^2/(n+x));
    for(n = 1,2000,print1(a(n)", "))
    
  • Python
    def R(n): return int(str(n)[::-1])
    def a(n):
        Rn2 = R(n**2)
        q, r = divmod((n-Rn2)**2, n+Rn2)
        return q if r == 0 else q + 1
    print([a(n) for n in range(1, 67)]) # Michael S. Branicky, Jan 17 2022