A350862 Decimal expansion of Sum_{k>=1} (k^(1/k^(1 + 1/1111)) - 1).
1, 2, 3, 4, 3, 2, 1, 9, 8, 2, 8, 1, 3, 8, 9, 0, 9, 3, 3, 3, 6, 8, 6, 4, 2, 4, 4, 0, 0, 4, 8, 8, 7, 7, 4, 8, 6, 8, 2, 6, 9, 1, 2, 5, 8, 7, 7, 1, 5, 4, 8, 3, 8, 1, 2, 6, 2, 3, 5, 0, 2, 6, 6, 6, 4, 0, 7, 4, 2, 2, 6, 9, 9, 0, 2, 7, 0, 3, 0, 1, 1, 3, 8, 2, 7, 7, 9
Offset: 7
Examples
1234321.98281389093336864244004887748682691258771548...
Links
- Daniel Hoyt, Computing the limiting difference between the sum and integral of x^(1/x), 2022, pp. 3-4.
Programs
-
Mathematica
digits = 120; d = 1; j = 1; s = 0; While[Abs[d] > 10^(-digits - 5), d = (-1)^j/j!*Derivative[j][Zeta][(1 + 1/1111)*j]; s += d; j++]; RealDigits[s, 10, 120][[1]] (* Vaclav Kotesovec, Jun 18 2023 *)
-
PARI
sumpos(k=1, k^(1/(k^(1 + 1/1111))) - 1)
Comments