cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A350870 Numbers k = x.y such that x.y = (x+y)^2, when x and y have the same number of digits, "." means concatenation, and y may not begin with 0.

Original entry on oeis.org

81, 2025, 3025, 494209, 24502500, 25502500, 52881984, 60481729, 6049417284, 6832014336, 101558217124, 108878221089, 123448227904, 127194229449, 152344237969, 213018248521, 217930248900, 249500250000, 250500250000, 284270248900, 289940248521, 371718237969, 413908229449, 420744227904
Offset: 1

Views

Author

Bernard Schott, Jan 20 2022

Keywords

Comments

Problem proposed on French site Diophante (see link).
We have to solve Diophantine equation (x+y)^2 = x*10^m + y where m = length(x) = length(y).
Squares of a variant of Kaprekar numbers (A045913).
Number of solutions with 2*m digits for m >= 1: 1, 2, 1, 4, 2, 21, ...
Compare with A347541 where x*y divides x.y, when x and y have the same number of digits, "." means concatenation, and y may not begin with 0.

Examples

			81 = (8+1)^2, hence 81 is a term.
3025 = (30+25)^2, hence 3025 is another term.
		

Crossrefs

Equals A238237 \ A350918.
Subsequence of A102766.
Subsequences: A038544, A350869.

Programs

  • PARI
    upto(n) = {i = 4; i2 = i^2; res = List(); while(i2 <= n, i++; i2 = i^2; if(#digits(i2) % 2 == 1, i = sqrtint(10^(#digits(i2))) + 1; i2 = i^2; ); if(is(i2), listput(res, i2) ); ); res }
    is(n) = { my(d = digits(n), d1, d2, frd2); if(#d % 2 == 1, return(0)); d1 = vector(#d \ 2, i, d[i]); d2 = vector(#d \ 2, i, d[i + #d \ 2]); frd2 = fromdigits(d2); 10^(#d \ 2 - 1) <= frd2 && (fromdigits(d1) + frd2)^2 == n } \\ David A. Corneth, Jan 21 2022

Formula

a(n) = A045913(n+1)^2.