cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A350879 Triangle T(n,k), n >= 1, 1 <= k <= n, read by rows, where T(n,k) is the number of partitions of n such that k*(greatest part) = (number of parts).

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 3, 1, 1, 0, 0, 0, 1, 2, 2, 1, 0, 0, 0, 0, 1, 4, 1, 1, 1, 0, 0, 0, 0, 1, 4, 2, 1, 1, 0, 0, 0, 0, 0, 1, 6, 3, 2, 1, 1, 0, 0, 0, 0, 0, 1, 7, 4, 2, 1, 1, 0, 0, 0, 0, 0, 0, 1, 11, 5, 2, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 11, 7, 2, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 1

Views

Author

Seiichi Manyama, Jan 21 2022

Keywords

Comments

T(n,k) is the number of partitions of n such that (greatest part) = k*(number of parts).
Column k > 1 is asymptotic to k! * Pi^k * exp(sqrt(2*Pi*n/3)) / (2^((k+4)/2) * 3^((k+1)/2) * n^((k+2)/2)). Equivalently, for fixed k > 1, T(n,k) ~ k! * Pi^k * A000041(n) / (6^(k/2) * n^(k/2)). - Vaclav Kotesovec, Oct 17 2024

Examples

			Triangle begins:
  1;
  0, 1;
  1, 0, 1;
  1, 0, 0, 1;
  1, 1, 0, 0, 1;
  1, 1, 0, 0, 0, 1;
  3, 1, 1, 0, 0, 0, 1;
  2, 2, 1, 0, 0, 0, 0, 1;
  4, 1, 1, 1, 0, 0, 0, 0, 1;
  4, 2, 1, 1, 0, 0, 0, 0, 0, 1;
  6, 3, 2, 1, 1, 0, 0, 0, 0, 0, 1;
		

Crossrefs

Row sums give A168659.

Programs

  • PARI
    T(n, k) = polcoef(sum(i=1, (n+1)\(k+1), x^((k+1)*i-1)*prod(j=1, i-1, (1-x^(k*i+j-1))/(1-x^j+x*O(x^n)))), n);
    
  • Ruby
    def partition(n, min, max)
      return [[]] if n == 0
      [max, n].min.downto(min).flat_map{|i| partition(n - i, min, i).map{|rest| [i, *rest]}}
    end
    def A(n)
      a = Array.new(n, 0)
      partition(n, 1, n).each{|ary|
        (1..n).each{|i|
          a[i - 1] += 1 if i * ary[0] == ary.size
        }
      }
      a
    end
    def A350879(n)
      (1..n).map{|i| A(i)}.flatten
    end
    p A350879(14)

Formula

G.f. of column k: Sum_{i>=1} x^((k+1)*i-1) * Product_{j=1..i-1} (1-x^(k*i+j-1))/(1-x^j).