A350879 Triangle T(n,k), n >= 1, 1 <= k <= n, read by rows, where T(n,k) is the number of partitions of n such that k*(greatest part) = (number of parts).
1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 3, 1, 1, 0, 0, 0, 1, 2, 2, 1, 0, 0, 0, 0, 1, 4, 1, 1, 1, 0, 0, 0, 0, 1, 4, 2, 1, 1, 0, 0, 0, 0, 0, 1, 6, 3, 2, 1, 1, 0, 0, 0, 0, 0, 1, 7, 4, 2, 1, 1, 0, 0, 0, 0, 0, 0, 1, 11, 5, 2, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 11, 7, 2, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 1
Examples
Triangle begins: 1; 0, 1; 1, 0, 1; 1, 0, 0, 1; 1, 1, 0, 0, 1; 1, 1, 0, 0, 0, 1; 3, 1, 1, 0, 0, 0, 1; 2, 2, 1, 0, 0, 0, 0, 1; 4, 1, 1, 1, 0, 0, 0, 0, 1; 4, 2, 1, 1, 0, 0, 0, 0, 0, 1; 6, 3, 2, 1, 1, 0, 0, 0, 0, 0, 1;
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1275 (rows 1..50).
Crossrefs
Programs
-
PARI
T(n, k) = polcoef(sum(i=1, (n+1)\(k+1), x^((k+1)*i-1)*prod(j=1, i-1, (1-x^(k*i+j-1))/(1-x^j+x*O(x^n)))), n);
-
Ruby
def partition(n, min, max) return [[]] if n == 0 [max, n].min.downto(min).flat_map{|i| partition(n - i, min, i).map{|rest| [i, *rest]}} end def A(n) a = Array.new(n, 0) partition(n, 1, n).each{|ary| (1..n).each{|i| a[i - 1] += 1 if i * ary[0] == ary.size } } a end def A350879(n) (1..n).map{|i| A(i)}.flatten end p A350879(14)
Formula
G.f. of column k: Sum_{i>=1} x^((k+1)*i-1) * Product_{j=1..i-1} (1-x^(k*i+j-1))/(1-x^j).
Comments