cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A047993 Number of balanced partitions of n: the largest part equals the number of parts.

Original entry on oeis.org

1, 0, 1, 1, 1, 1, 3, 2, 4, 4, 6, 7, 11, 11, 16, 19, 25, 29, 40, 45, 60, 70, 89, 105, 134, 156, 196, 232, 285, 336, 414, 485, 591, 696, 839, 987, 1187, 1389, 1661, 1946, 2311, 2702, 3201, 3731, 4400, 5126, 6018, 6997, 8195, 9502, 11093, 12849, 14949, 17281, 20062
Offset: 1

Views

Author

Keywords

Comments

Useful in the creation of plane partitions with C3 or C3v symmetry.
The function T[m,a,b] used here gives the partitions of m whose Ferrers plot fits within an a X b box.
Central terms of triangle in A063995: a(n) = A063995(n,0). - Reinhard Zumkeller, Jul 24 2013
Sequence enumerates the collection of partitions of size n that are in the monoid of Dyson rank=0, or balanced partitions, under the binary operation A*B = (a1,a2,...,a[k-1],k)*(b1,...,b[n-1,n) = (a1*b1,...,a1*n,a2*b1,...,a2*n,...,k*b1,...,k*n), where A is a partition with k parts and B is a partition with n parts, and A*B is a partition with k*n parts. Note that the rank of A*B is 0, as required. For example, the product of the rank 0 partitions (1,2,3) of 6 and (1,1,3) of 5 is the rank 0 partition (1,1,2,2,3,3,3,6,9) of 30. There is no rank zero partition of 2, as shown in the sequence. It can be seen that any element of the monoid that partitions an odd prime p or a composite number of form 2p cannot be a product of smaller nontrivial partitions, whether in this monoid or not. - Richard Locke Peterson, Jul 15 2018
The "multiplication" given above was noted earlier by Franklin T. Adams-Watters in A122697. - Richard Peterson, Jul 19 2023
The Heinz numbers of these integer partitions are given by A106529. - Gus Wiseman, Mar 09 2019

Examples

			From _Joerg Arndt_, Oct 08 2012: (Start)
a(12) = 7 because the partitions of 12 where the largest part equals the number of parts are
   2 + 3 + 3 + 4,
   2 + 2 + 4 + 4,
   1 + 3 + 4 + 4,
   1 + 2 + 2 + 2 + 5,
   1 + 1 + 2 + 3 + 5,
   1 + 1 + 1 + 4 + 5, and
   1 + 1 + 1 + 1 + 2 + 6.
(End)
From _Gus Wiseman_, Mar 09 2019: (Start)
The a(1) = 1 through a(13) = 11 integer partitions:
  1  21  22  311  321  322   332   333    4222   4322    4332    4333
                       331   4211  4221   4321   4331    4422    4432
                       4111        4311   4411   4421    4431    4441
                                   51111  52111  52211   52221   52222
                                                 53111   53211   53221
                                                 611111  54111   53311
                                                         621111  54211
                                                                 55111
                                                                 622111
                                                                 631111
                                                                 7111111
(End)
		

Crossrefs

Programs

  • Haskell
    a047993 = flip a063995 0  -- Reinhard Zumkeller, Jul 24 2013
  • Maple
    A047993 := proc(n)
         a := 0 ;
         for p in combinat[partition](n) do
            r := max(op(p))-nops(p) ;
            if r = 0 then
                 a := a+1 ;
            end if;
         end do:
         a ;
     end proc:
    seq(A047993(n),n=1..20) ; # Emeric Deutsch, Dec 11 2004
  • Mathematica
    Table[ Count[Partitions[n], par_List/; First[par]===Length[par]], {n, 12}] or recur: Sum[T[n-(2m-1), m-1, m-1], {m, Ceiling[Sqrt[n]], Floor[(n+1)/2]}] with T[m_, a_, b_]/; b < a := T[m, b, a]; T[m_, a_, b_]/; m > a*b := 0; T[m_, a_, b_]/; (2m > a*b) := T[a*b-m, a, b]; T[m_, 1, b_] := If[b < m, 0, 1]; T[0, , ] := 1; T[m_, a_, b_] := T[m, a, b]=Sum[T[m-a*i, a-1, b-i], {i, 0, Floor[m/a]}];
    Table[Sum[ -(-1)^k*(p[n-(3*k^2-k)/2] - p[n-(3*k^2+k)/2]), {k, 1, Floor[(1+Sqrt[1+24*n])/6]}] /. p -> PartitionsP, {n, 1, 64}] (* Wouter Meeussen *)
    (* also *)
    Table[Count[IntegerPartitions[n], q_ /; Max[q] == Length[q]], {n, 24}]
    (* Clark Kimberling, Feb 13 2014 *)
    nmax = 100; p = 1; s = 1; Do[p = Normal[Series[p*x^2*(1 - x^(2*k - 1))*(1 + x^k)/(1 - x^k), {x, 0, nmax}]]; s += p;, {k, 1, nmax + 1}]; Take[CoefficientList[s, x], nmax] (* Vaclav Kotesovec, Oct 16 2024 *)
  • PARI
    N=66;  q='q + O('q^N );
    S=2+2*ceil(sqrt(N));
    gf= sum(k=1, S,  (-1)^k * ( q^((3*k^2+k)/2) - q^((3*k^2-k)/2) ) ) / prod(k=1,N, 1-q^k );
    /* Joerg Arndt, Oct 08 2012 */
    
  • PARI
    my(N=66, x='x+O('x^N)); Vec(sum(k=1, N, x^(2*k-1)*prod(j=1, k-1, (1-x^(k+j-1))/(1-x^j)))) \\ Seiichi Manyama, Jan 24 2022
    

Formula

a(n) = p(n-1) - p(n-2) - p(n-5) + p(n-7) + ... + (-1)^k*(p(n-(3*k^2-k)/2) - p(n-(3*k^2+k)/2)) + ..., where p() is A000041(). E.g., a(20) = p(19) - p(18) - p(15) + p(13) + p(8) - p(5) = 490 - 385 - 176 + 101 + 22 - 7 = 45. - Vladeta Jovovic, Aug 04 2004
G.f.: ( Sum_{k>=1} (-1)^k * ( x^((3*k^2+k)/2) - x^((3*k^2-k)/2) ) ) / Product_{k>=1} (1-x^k). - Vladeta Jovovic, Aug 05 2004
a(n) ~ exp(Pi*sqrt(2*n/3))*Pi / (48*sqrt(2)*n^(3/2)) ~ p(n) * Pi / (4*sqrt(6*n)), where p(n) is the partition function A000041. - Vaclav Kotesovec, Oct 06 2016
G.f.: Sum_{k>=1} x^(2*k-1) * Product_{j=1..k-1} (1-x^(k+j-1))/(1-x^j). - Seiichi Manyama, Jan 24 2022

A168659 Number of partitions of n such that the number of parts is divisible by the greatest part. Also number of partitions of n such that the greatest part is divisible by the number of parts.

Original entry on oeis.org

1, 1, 2, 2, 3, 3, 6, 6, 8, 9, 14, 16, 22, 25, 33, 39, 51, 60, 79, 92, 116, 137, 174, 204, 254, 300, 368, 435, 530, 625, 760, 896, 1076, 1267, 1518, 1780, 2121, 2484, 2946, 3444, 4070, 4749, 5594, 6514, 7637, 8879, 10384, 12043, 14040, 16255
Offset: 1

Views

Author

Vladeta Jovovic, Dec 02 2009

Keywords

Examples

			a(5)=3 because in the partitions [1,1,1,1,1], [1,1,1,2], [1,1,3] the number of parts is divisible by the greatest part; not true for the partitions [1,2,2],[2,3], [1,4], and [5]. - _Emeric Deutsch_, Dec 04 2009
From _Gus Wiseman_, Feb 08 2021: (Start)
The a(1) = 1 through a(10) = 9 partitions of the first type:
  1  11  21   22    311    321     322      332       333        4222
         111  1111  2111   2211    331      2222      4221       4321
                    11111  111111  2221     4211      4311       4411
                                   4111     221111    51111      52111
                                   211111   311111    222111     222211
                                   1111111  11111111  321111     322111
                                                      21111111   331111
                                                      111111111  22111111
                                                                 1111111111
The a(1) = 1 through a(11) = 14 partitions of the second type (A=10, B=11):
  1   2   3    4    5     6     7      8      9       A       B
          21   22   41    42    43     44     63      64      65
                    311   321   61     62     81      82      83
                                322    332    333     622     A1
                                331    611    621     631     632
                                4111   4211   4221    4222    641
                                              4311    4321    911
                                              51111   4411    4322
                                                      52111   4331
                                                              4421
                                                              8111
                                                              52211
                                                              53111
                                                              611111
(End)
		

Crossrefs

Note: A-numbers of Heinz-number sequences are in parentheses below.
The case of equality is A047993 (A106529).
The Heinz numbers of these partitions are A340609/A340610.
If all parts (not just the greatest) are divisors we get A340693 (A340606).
The strict case in the second interpretation is A340828 (A340856).
A006141 = partitions whose length equals their minimum (A324522).
A067538 = partitions whose length/max divides their sum (A316413/A326836).
A200750 = partitions with length coprime to maximum (A340608).
Row sums of A350879.

Programs

  • Maple
    a := proc (n) local pn, ct, j: with(combinat): pn := partition(n): ct := 0: for j to numbpart(n) do if `mod`(nops(pn[j]), max(seq(pn[j][i], i = 1 .. nops(pn[j])))) = 0 then ct := ct+1 else end if end do: ct end proc: seq(a(n), n = 1 .. 50); # Emeric Deutsch, Dec 04 2009
  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Divisible[Length[#],Max[#]]&]],{n,30}] (* Gus Wiseman, Feb 08 2021 *)
    nmax = 100; s = 0; Do[s += Normal[Series[Sum[x^((m+1)*k - 1) * Product[(1 - x^(m*k + j - 1))/(1 - x^j), {j, 1, k-1}], {k, 1, (1 + nmax)/(1 + m) + 1}], {x, 0, nmax}]], {m, 1, nmax}]; Rest[CoefficientList[s, x]] (* Vaclav Kotesovec, Oct 18 2024 *)

Formula

G.f.: Sum_{i>=1} Sum_{j>=1} x^((i+1)*j-1) * Product_{k=1..j-1} (1-x^(i*j+k-1))/(1-x^k). - Seiichi Manyama, Jan 24 2022
a(n) ~ c * exp(Pi*sqrt(2*n/3)) / n^(3/2), where c = 0.04628003... - Vaclav Kotesovec, Nov 16 2024

Extensions

Extended by Emeric Deutsch, Dec 04 2009

A237753 Number of partitions of n such that 2*(greatest part) = (number of parts).

Original entry on oeis.org

0, 1, 0, 0, 1, 1, 1, 2, 1, 2, 3, 4, 5, 7, 7, 9, 12, 15, 17, 23, 27, 34, 42, 50, 60, 75, 87, 106, 128, 154, 182, 222, 260, 311, 369, 437, 515, 613, 716, 845, 993, 1166, 1361, 1599, 1861, 2176, 2534, 2950, 3422, 3983, 4605, 5339, 6174, 7136, 8227, 9500, 10928
Offset: 1

Views

Author

Clark Kimberling, Feb 13 2014

Keywords

Comments

Also, the number of partitions of n such that (greatest part) = 2*(number of parts); hence, the number of partitions of n such that (rank + greatest part) = 0.

Examples

			a(8) = 2 counts these partitions:  311111, 2222.
		

Crossrefs

Programs

  • Mathematica
    z = 50; Table[Count[IntegerPartitions[n], p_ /; 2 Max[p] = = Length[p]], {n, z}]
    (* or *)
    nmax = 100; Rest[CoefficientList[Series[Sum[x^(3*k-1) * Product[(1 - x^(2*k+j-1)) / (1 - x^j), {j, 1, k-1}], {k, 1, nmax/3 + 1}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Oct 15 2024 *)
    nmax = 100; p = x; s = x; Do[p = Normal[Series[p*x^3*(1 - x^(3*k - 1))*(1 - x^(3*k))*(1 - x^(3*k + 1))/((1 - x^(2*k + 1))*(1 - x^(2*k))*(1 - x^k)), {x, 0, nmax}]]; s += p;, {k, 1, nmax/3 + 1}]; Take[CoefficientList[s, x], nmax] (* Vaclav Kotesovec, Oct 16 2024 *)
  • PARI
    my(N=66, x='x+O('x^N)); concat(0, Vec(sum(k=1, N, x^(3*k-1)*prod(j=1, k-1, (1-x^(2*k+j-1))/(1-x^j))))) \\ Seiichi Manyama, Jan 24 2022

Formula

G.f.: Sum_{k>=1} x^(3*k-1) * Product_{j=1..k-1} (1-x^(2*k+j-1))/(1-x^j). - Seiichi Manyama, Jan 24 2022
a(n) ~ Pi^2 * exp(Pi*sqrt(2*n/3)) / (4 * 3^(3/2) * n^2). - Vaclav Kotesovec, Oct 17 2024

A350890 Triangle T(n,k), n >= 1, 1 <= k <= n, read by rows, where T(n,k) is the number of partitions of n such that (smallest part) = k*(number of parts).

Original entry on oeis.org

1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 2, 1, 0, 0, 0, 0, 0, 0, 1, 2, 1, 0, 0, 0, 0, 0, 0, 0, 1, 3, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 3, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 4, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 4, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 1

Views

Author

Seiichi Manyama, Jan 21 2022

Keywords

Comments

Column k is asymptotic to (1 - alfa) * exp(2*sqrt(n*(k*log(alfa)^2 + polylog(2, 1 - alfa)))) * (k*log(alfa)^2 + polylog(2, 1 - alfa))^(1/4) / (2*sqrt(Pi) * sqrt(alfa + 2*k - 2*alfa*k) * n^(3/4)), where alfa is positive real root of the equation alfa^(2*k) + alfa - 1 = 0. - Vaclav Kotesovec, Jan 21 2022

Examples

			Triangle begins:
  1;
  0, 1;
  0, 0, 1;
  1, 0, 0, 1;
  1, 0, 0, 0, 1;
  1, 0, 0, 0, 0, 1;
  1, 0, 0, 0, 0, 0, 1;
  1, 1, 0, 0, 0, 0, 0, 1;
  2, 1, 0, 0, 0, 0, 0, 0, 1;
  2, 1, 0, 0, 0, 0, 0, 0, 0, 1;
  3, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1;
		

Crossrefs

Row sums give A168656.
Column k=1..5 give A006141, A350893, A350894, A350898, A350899.

Programs

  • PARI
    T(n, k) = polcoef(sum(i=1, sqrtint(n\k), x^(k*i^2)/prod(j=1, i-1, 1-x^j+x*O(x^n))), n);
    
  • Ruby
    def partition(n, min, max)
      return [[]] if n == 0
      [max, n].min.downto(min).flat_map{|i| partition(n - i, min, i).map{|rest| [i, *rest]}}
    end
    def A(n)
      a = Array.new(n, 0)
      partition(n, 1, n).each{|ary|
        (1..n).each{|i|
          a[i - 1] += 1 if ary[-1] == i * ary.size
        }
      }
      a
    end
    def A350890(n)
      (1..n).map{|i| A(i)}.flatten
    end
    p A350890(14)

Formula

G.f. of column k: Sum_{i>=1} x^(k*i^2)/Product_{j=1..i-1} (1-x^j).

A350889 Triangle T(n,k), n >= 1, 1 <= k <= n, read by rows, where T(n,k) is the number of partitions of n such that k*(smallest part) = (number of parts).

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 3, 3, 2, 1, 1, 1, 2, 3, 4, 3, 2, 1, 1, 2, 2, 4, 5, 5, 3, 2, 1, 1, 2, 3, 4, 7, 6, 5, 3, 2, 1, 1, 3, 4, 5, 8, 9, 7, 5, 3, 2, 1, 1, 3, 5, 6, 10, 11, 10, 7, 5, 3, 2, 1, 1, 4, 6, 7, 12, 15, 13, 11, 7, 5, 3, 2, 1, 1, 4, 8, 8, 14, 18, 18, 14, 11, 7, 5, 3, 2, 1, 1
Offset: 1

Views

Author

Seiichi Manyama, Jan 21 2022

Keywords

Comments

Column k is asymptotic to r^2 * (k*log(r)^2 + polylog(2, r^2))^(1/4) * exp(2*sqrt((k*log(r)^2 + polylog(2, r^2))*n)) / (2*sqrt(Pi*k*(k - (k-2)*r^2)) * n^(3/4)), where r is the positive real root of the equation r^2 = 1 - r^k. - Vaclav Kotesovec, Oct 14 2024

Examples

			Triangle begins:
  1;
  0, 1;
  0, 1, 1;
  1, 1, 1, 1;
  1, 1, 2, 1, 1;
  1, 1, 2, 2, 1, 1;
  1, 1, 3, 3, 2, 1, 1;
  1, 2, 3, 4, 3, 2, 1, 1;
  2, 2, 4, 5, 5, 3, 2, 1, 1;
  2, 3, 4, 7, 6, 5, 3, 2, 1, 1;
  3, 4, 5, 8, 9, 7, 5, 3, 2, 1, 1;
		

Crossrefs

Row sums give A168657.

Programs

  • PARI
    T(n, k) = polcoef(sum(i=1, sqrtint(n\k), x^(k*i^2)/prod(j=1, k*i-1, 1-x^j+x*O(x^n))), n);
    
  • Ruby
    def partition(n, min, max)
      return [[]] if n == 0
      [max, n].min.downto(min).flat_map{|i| partition(n - i, min, i).map{|rest| [i, *rest]}}
    end
    def A(n)
      a = Array.new(n, 0)
      partition(n, 1, n).each{|ary|
        (1..n).each{|i|
          a[i - 1] += 1 if i * ary[-1] == ary.size
        }
      }
      a
    end
    def A350889(n)
      (1..n).map{|i| A(i)}.flatten
    end
    p A350889(14)

Formula

G.f. of column k: Sum_{i>=1} x^(k*i^2)/Product_{j=1..k*i-1} (1-x^j).

A237756 Number of partitions of n such that 3*(greatest part) = (number of parts).

Original entry on oeis.org

0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 4, 4, 6, 7, 10, 10, 13, 14, 19, 21, 27, 31, 40, 45, 55, 64, 79, 91, 111, 127, 154, 177, 211, 243, 290, 333, 394, 455, 538, 618, 726, 834, 977, 1121, 1304, 1495, 1738, 1989, 2302, 2633, 3041, 3473, 3999, 4562, 5241
Offset: 1

Views

Author

Clark Kimberling, Feb 13 2014

Keywords

Comments

Also, the number of partitions of n such that (greatest part) = 3*(number of parts).

Examples

			a(15) = 4 counts these partitions: [12,1,1,1], [9,5,1], [9,4,2], [9,3,3].
		

Crossrefs

Column 3 of A350879.

Programs

  • Mathematica
    z = 50; Table[Count[IntegerPartitions[n], p_ /; Max[p] = = 3 Length[p]], {n, z}]
    (* or *)
    nmax = 100; Rest[CoefficientList[Series[Sum[x^(4*k-1) * Product[(1 - x^(3*k+j-1)) / (1 - x^j), {j, 1, k-1}], {k, 1, nmax/4 + 1}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Oct 15 2024 *)
    nmax = 100; p = x^2; s = x^2; Do[p = Normal[Series[p*x^4*(1 - x^(4*k - 1))*(1 - x^(4*k))*(1 - x^(4*k + 1))*(1 - x^(4*k + 2))/((1 - x^(3*k + 2))*(1 - x^(3*k + 1))*(1 - x^(3*k))*(1 - x^k)), {x, 0, nmax}]]; s += p;, {k, 1, nmax/4 + 1}]; Take[CoefficientList[s, x], nmax] (* Vaclav Kotesovec, Oct 16 2024 *)
  • PARI
    my(N=66, x='x+O('x^N)); concat([0, 0], Vec(sum(k=1, N, x^(4*k-1)*prod(j=1, k-1, (1-x^(3*k+j-1))/(1-x^j))))) \\ Seiichi Manyama, Jan 24 2022

Formula

G.f.: Sum_{k>=1} x^(4*k-1) * Product_{j=1..k-1} (1-x^(3*k+j-1))/(1-x^j). - Seiichi Manyama, Jan 24 2022
a(n) ~ Pi^3 * exp(Pi*sqrt(2*n/3)) / (3*2^(5/2)*n^(5/2)). - Vaclav Kotesovec, Oct 17 2024

A348163 Number of partitions of n such that 4*(greatest part) = (number of parts).

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 3, 2, 3, 4, 5, 6, 8, 9, 12, 14, 16, 18, 22, 25, 30, 35, 42, 49, 60, 68, 81, 93, 109, 127, 149, 171, 200, 231, 269, 309, 359, 410, 474, 544, 625, 715, 824, 939, 1080, 1232, 1411, 1607, 1839, 2090, 2385, 2708, 3081, 3493, 3972, 4493
Offset: 1

Views

Author

Seiichi Manyama, Jan 25 2022

Keywords

Comments

Also, the number of partitions of n such that (greatest part) = 4*(number of parts).

Examples

			a(16) = 3 counts these partitions:
[3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[2, 2, 2, 2, 2, 2, 2, 2].
		

Crossrefs

Column 4 of A350879.

Programs

  • Mathematica
    nmax = 100; Rest[CoefficientList[Series[Sum[x^(5*k-1) * Product[(1 - x^(4*k+j-1)) / (1 - x^j), {j, 1, k-1}], {k, 1, nmax/5 + 1}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Oct 15 2024 *)
    nmax = 100; p = x^3; s = x^3; Do[p = Normal[Series[p*x^5*(1 - x^(5*k - 1))*(1 - x^(5*k))*(1 - x^(5*k + 1))*(1 - x^(5*k + 2))*(1 - x^(5*k + 3))/((1 - x^(4*k + 3))*(1 - x^(4*k + 2))*(1 - x^(4*k + 1))*(1 - x^(4*k))*(1 - x^k)), {x, 0, nmax}]]; s += p;, {k, 1, nmax/5 + 1}]; Take[CoefficientList[s, x], nmax] (* Vaclav Kotesovec, Oct 16 2024 *)
  • PARI
    my(N=66, x='x+O('x^N)); concat([0, 0, 0], Vec(sum(k=1, N, x^(5*k-1)*prod(j=1, k-1, (1-x^(4*k+j-1))/(1-x^j)))))

Formula

G.f.: Sum_{k>=1} x^(5*k-1) * Product_{j=1..k-1} (1-x^(4*k+j-1))/(1-x^j).
a(n) ~ Pi^4 * exp(Pi*sqrt(2*n/3)) / (2*3^(3/2)*n^3). - Vaclav Kotesovec, Oct 17 2024

A348164 Number of partitions of n such that 5*(greatest part) = (number of parts).

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 3, 3, 5, 5, 7, 8, 10, 11, 15, 16, 20, 22, 26, 28, 35, 38, 46, 52, 62, 70, 85, 95, 112, 127, 148, 166, 195, 219, 254, 288, 332, 375, 435, 489, 562, 635, 726, 817, 936, 1051, 1198, 1348, 1531, 1721, 1957, 2196, 2489
Offset: 1

Views

Author

Seiichi Manyama, Jan 25 2022

Keywords

Comments

Also, the number of partitions of n such that (greatest part) = 5*(number of parts).

Examples

			a(19) = 3 counts these partitions:
[3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[2, 2, 2, 2, 2, 2, 2, 2, 2, 1].
		

Crossrefs

Column 5 of A350879.

Programs

  • Mathematica
    nmax = 100; Rest[CoefficientList[Series[Sum[x^(6*k-1) * Product[(1 - x^(5*k+j-1)) / (1 - x^j), {j, 1, k-1}], {k, 1, nmax/6 + 1}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Oct 15 2024 *)
    nmax = 100; p = x^4; s = x^4; Do[p = Normal[Series[p*x^6*(1 - x^(6*k - 1))*(1 - x^(6*k))*(1 - x^(6*k + 1))*(1 - x^(6*k + 2))*(1 - x^(6*k + 3))*(1 - x^(6*k + 4))/((1 - x^(5*k + 4))*(1 - x^(5*k + 3))*(1 - x^(5*k + 2))*(1 - x^(5*k + 1))*(1 - x^(5*k))*(1 - x^k)), {x, 0, nmax}]]; s += p;, {k, 1, nmax/6 + 1}]; Take[CoefficientList[s, x], nmax] (* Vaclav Kotesovec, Oct 16 2024 *)
  • PARI
    my(N=66, x='x+O('x^N)); concat([0, 0, 0, 0], Vec(sum(k=1, N, x^(6*k-1)*prod(j=1, k-1, (1-x^(5*k+j-1))/(1-x^j)))))

Formula

G.f.: Sum_{k>=1} x^(6*k-1) * Product_{j=1..k-1} (1-x^(5*k+j-1))/(1-x^j).
a(n) ~ 5 * Pi^5 * exp(Pi*sqrt(2*n/3)) / (9 * 2^(3/2) * n^(7/2)). - Vaclav Kotesovec, Oct 17 2024

A377107 G.f.: Sum_{k>=1} x^(7*k-1) * Product_{j=1..k-1} (1-x^(6*k+j-1))/(1-x^j).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 4, 3, 4, 5, 6, 7, 9, 10, 12, 14, 17, 19, 23, 26, 30, 33, 38, 43, 50, 56, 65, 74, 86, 97, 113, 128, 148, 167, 191, 215, 246, 276, 314, 354, 402, 452, 513, 577, 654, 735, 830, 932, 1052, 1178
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 16 2024

Keywords

Crossrefs

Column 6 of A350879.

Programs

  • Mathematica
    nmax = 100; CoefficientList[Series[Sum[x^(7*k-1)*Product[(1-x^(6*k+j-1))/(1-x^j), {j, 1, k-1}], {k, 1, nmax/7+1}], {x, 0, nmax}], x]
    nmax = 100; p=x^5; s=x^5; Do[p=Normal[Series[p*x^7*(1-x^(7*k-1))*(1-x^(7*k))*(1-x^(7*k+1))*(1-x^(7*k+2))*(1-x^(7*k+3))*(1-x^(7*k+4))*(1-x^(7*k+5))/((1-x^(6*k+5))*(1-x^(6*k+4))*(1-x^(6*k+3))*(1-x^(6*k+2))*(1-x^(6*k+1))*(1-x^(6*k))*(1-x^k)), {x, 0, nmax}]]; s+=p;, {k, 1, nmax/7+1}]; Join[{0}, Take[CoefficientList[s, x], nmax]]

Formula

a(n) ~ 5 * Pi^6 * exp(Pi*sqrt(2*n/3)) / (2 * 3^(3/2) * n^4).

A377108 G.f.: Sum_{k>=1} x^(8*k-1) * Product_{j=1..k-1} (1-x^(7*k+j-1))/(1-x^j).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 4, 4, 4, 4, 6, 6, 8, 9, 11, 12, 15, 16, 20, 22, 26, 29, 35, 37, 43, 47, 55, 60, 70, 77, 90, 100, 115, 128, 149, 165, 190, 212, 242, 269, 306, 339, 385, 427, 482, 536, 606, 672, 757
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 16 2024

Keywords

Comments

In general, if m > 1 and g.f. = Sum_{k>=1} x^((m+1)*k-1) * Product_{j=1..k-1} (1-x^(m*k+j-1))/(1-x^j), then a(n) ~ m! * Pi^m * exp(Pi*sqrt(2*n/3)) / (2^((m+4)/2) * 3^((m+1)/2) * n^((m+2)/2)).
Equivalently, a(n) ~ m! * Pi^m * A000041(n) / (6^(m/2) * n^(m/2)).

Crossrefs

Column 7 of A350879.
Cf. A000041.

Programs

  • Mathematica
    nmax=100; CoefficientList[Series[Sum[x^(8*k-1)*Product[(1-x^(7*k+j-1))/(1-x^j), {j, 1, k-1}], {k, 1, nmax/8+1}], {x, 0, nmax}], x]
    nmax=100; p=x^6; s=x^6; Do[p=Normal[Series[p*x^8*(1-x^(8*k-1))*(1-x^(8*k))*(1-x^(8*k+1))*(1-x^(8*k+2))*(1-x^(8*k+3))*(1-x^(8*k+4))*(1-x^(8*k+5))*(1-x^(8*k+6))/((1-x^(7*k+6))*(1-x^(7*k+5))*(1-x^(7*k+4))*(1-x^(7*k+3))*(1-x^(7*k+2))*(1-x^(7*k+1))*(1-x^(7*k))*(1-x^k)), {x, 0, nmax}]]; s+=p;, {k, 1, nmax/8+1}]; Join[{0}, Take[CoefficientList[s, x], nmax]]

Formula

a(n) ~ 35 * Pi^7 * exp(Pi*sqrt(2*n/3)) / (9 * 2^(3/2) * n^(9/2)).
Showing 1-10 of 10 results.