cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A237755 Number of partitions of n such that 2*(greatest part) >= (number of parts).

Original entry on oeis.org

1, 2, 2, 4, 6, 9, 12, 18, 24, 34, 46, 63, 83, 111, 144, 190, 245, 318, 405, 520, 657, 833, 1045, 1312, 1634, 2036, 2517, 3114, 3829, 4705, 5751, 7027, 8544, 10381, 12564, 15190, 18301, 22026, 26425, 31669, 37849, 45180, 53796, 63983, 75923, 89987, 106435
Offset: 1

Views

Author

Clark Kimberling, Feb 13 2014

Keywords

Comments

Also, the number of partitions of n such that (greatest part) <= 2*(number of parts); hence, the number of partitions of n such that (rank + greatest part) >= 0.

Examples

			a(6) = 9 counts all of the 11 partitions of 6 except these:  21111, 111111.
		

Crossrefs

Programs

  • Mathematica
    z = 50; Table[Count[IntegerPartitions[n], p_ /; 2 Max[p] >= Length[p]], {n, z}]
  • PARI
    {a(n) = my(A); A = sum(m=0,n,x^m*prod(k=1,m,(1-x^(2*m+k-1))/(1-x^k +x*O(x^n)))); polcoeff(A,n)}
    for(n=1,60,print1(a(n),", ")) \\ Paul D. Hanna, Aug 03 2015

Formula

a(n) = A000041(n) - A237751(n).
G.f.: Sum_{n>=1} x^n * Product_{k=1..n} (1 - x^(2*n+k-1))/(1 - x^k). - Paul D. Hanna, Aug 03 2015

A350879 Triangle T(n,k), n >= 1, 1 <= k <= n, read by rows, where T(n,k) is the number of partitions of n such that k*(greatest part) = (number of parts).

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 3, 1, 1, 0, 0, 0, 1, 2, 2, 1, 0, 0, 0, 0, 1, 4, 1, 1, 1, 0, 0, 0, 0, 1, 4, 2, 1, 1, 0, 0, 0, 0, 0, 1, 6, 3, 2, 1, 1, 0, 0, 0, 0, 0, 1, 7, 4, 2, 1, 1, 0, 0, 0, 0, 0, 0, 1, 11, 5, 2, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 11, 7, 2, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 1

Views

Author

Seiichi Manyama, Jan 21 2022

Keywords

Comments

T(n,k) is the number of partitions of n such that (greatest part) = k*(number of parts).
Column k > 1 is asymptotic to k! * Pi^k * exp(sqrt(2*Pi*n/3)) / (2^((k+4)/2) * 3^((k+1)/2) * n^((k+2)/2)). Equivalently, for fixed k > 1, T(n,k) ~ k! * Pi^k * A000041(n) / (6^(k/2) * n^(k/2)). - Vaclav Kotesovec, Oct 17 2024

Examples

			Triangle begins:
  1;
  0, 1;
  1, 0, 1;
  1, 0, 0, 1;
  1, 1, 0, 0, 1;
  1, 1, 0, 0, 0, 1;
  3, 1, 1, 0, 0, 0, 1;
  2, 2, 1, 0, 0, 0, 0, 1;
  4, 1, 1, 1, 0, 0, 0, 0, 1;
  4, 2, 1, 1, 0, 0, 0, 0, 0, 1;
  6, 3, 2, 1, 1, 0, 0, 0, 0, 0, 1;
		

Crossrefs

Row sums give A168659.

Programs

  • PARI
    T(n, k) = polcoef(sum(i=1, (n+1)\(k+1), x^((k+1)*i-1)*prod(j=1, i-1, (1-x^(k*i+j-1))/(1-x^j+x*O(x^n)))), n);
    
  • Ruby
    def partition(n, min, max)
      return [[]] if n == 0
      [max, n].min.downto(min).flat_map{|i| partition(n - i, min, i).map{|rest| [i, *rest]}}
    end
    def A(n)
      a = Array.new(n, 0)
      partition(n, 1, n).each{|ary|
        (1..n).each{|i|
          a[i - 1] += 1 if i * ary[0] == ary.size
        }
      }
      a
    end
    def A350879(n)
      (1..n).map{|i| A(i)}.flatten
    end
    p A350879(14)

Formula

G.f. of column k: Sum_{i>=1} x^((k+1)*i-1) * Product_{j=1..i-1} (1-x^(k*i+j-1))/(1-x^j).

A350894 Number of partitions of n such that (smallest part) = 3*(number of parts).

Original entry on oeis.org

0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 13, 14, 15, 17, 18, 20, 22, 24, 26, 29, 31, 34, 37, 40, 43, 47, 50, 54, 58, 62, 66, 71, 75, 80, 85, 90, 95, 102, 107, 114, 121, 129, 136, 146, 154, 165, 175, 187, 198, 213
Offset: 1

Views

Author

Seiichi Manyama, Jan 21 2022

Keywords

Crossrefs

Column 3 of A350890.

Programs

  • PARI
    my(N=99, x='x+O('x^N)); concat([0, 0], Vec(sum(k=1, sqrtint(N\3), x^(3*k^2)/prod(j=1, k-1, 1-x^j))))

Formula

G.f.: Sum_{k>=1} x^(3*k^2)/Product_{j=1..k-1} (1-x^j).
a(n) ~ (1 - alfa) * exp(2*sqrt(n*(3*log(alfa)^2 + polylog(2, 1 - alfa)))) * (3*log(alfa)^2 + polylog(2, 1 - alfa))^(1/4) / (2*sqrt(Pi) * sqrt(6 - 5*alfa) * n^(3/4)), where alfa = 0.7780895986786010978806823096592944458720784440255... is positive real root of the equation alfa^6 + alfa - 1 = 0. - Vaclav Kotesovec, Jan 22 2022

A350892 Number of partitions of n such that 3*(smallest part) = (number of parts).

Original entry on oeis.org

0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 6, 7, 8, 10, 12, 15, 18, 22, 27, 33, 40, 48, 58, 69, 82, 98, 115, 135, 158, 184, 214, 248, 286, 330, 379, 435, 497, 569, 648, 739, 840, 955, 1082, 1228, 1388, 1572, 1775, 2005, 2259, 2549, 2867, 3228, 3626, 4076, 4571, 5131, 5745, 6438, 7199, 8053, 8992, 10045, 11199
Offset: 1

Views

Author

Seiichi Manyama, Jan 21 2022

Keywords

Crossrefs

Column 3 of A350889.

Programs

  • Mathematica
    CoefficientList[Series[Sum[x^(3k^2)/Product[1-x^j,{j,3k-1}],{k,64}],{x,0,64}],x] (* Stefano Spezia, Jan 22 2022 *)
    Table[Count[IntegerPartitions[n],?(3#[[-1]]==Length[#]&)],{n,70}] (* _Harvey P. Dale, Jul 13 2023 *)
  • PARI
    my(N=66, x='x+O('x^N)); concat([0, 0], Vec(sum(k=1, sqrtint(N\3), x^(3*k^2)/prod(j=1, 3*k-1, 1-x^j))))

Formula

G.f.: Sum_{k>=1} x^(3*k^2)/Product_{j=1..3*k-1} (1-x^j).
a(n) ~ c * exp(2*sqrt((5*log(A075778)^2 + 2*polylog(2, 1 - A075778))*n)) / n^(3/4), where c = (3*log(A075778)^2 + polylog(2, A075778^2))^(1/4) / (2*sqrt(3*Pi*(1 + A075778)*(2 + 3*A075778))) = 0.0582980106266835787... - Vaclav Kotesovec, Jan 24 2022, updated Oct 14 2024

A347867 Number of partitions of n such that 3*(greatest part) >= (number of parts).

Original entry on oeis.org

1, 2, 3, 4, 6, 10, 14, 20, 27, 38, 51, 70, 92, 123, 162, 212, 274, 355, 453, 579, 733, 928, 1165, 1463, 1822, 2269, 2808, 3470, 4266, 5241, 6407, 7823, 9514, 11554, 13983, 16900, 20359, 24494, 29386, 35205, 42069, 50206, 59773, 71069, 84322, 99913, 118157, 139556, 164528, 193734
Offset: 1

Views

Author

Seiichi Manyama, Jan 25 2022

Keywords

Comments

Also, the number of partitions of n such that (greatest part) <= 3*(number of parts).

Crossrefs

Programs

  • PARI
    my(N=66, x='x+O('x^N)); Vec(sum(k=1, N, x^k*prod(j=1, k, (1-x^(3*k+j-1))/(1-x^j))))

Formula

G.f.: Sum_{k>=1} x^k * Product_{j=1..k} (1-x^(3*k+j-1))/(1-x^j).
Showing 1-5 of 5 results.