cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A350890 Triangle T(n,k), n >= 1, 1 <= k <= n, read by rows, where T(n,k) is the number of partitions of n such that (smallest part) = k*(number of parts).

Original entry on oeis.org

1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 2, 1, 0, 0, 0, 0, 0, 0, 1, 2, 1, 0, 0, 0, 0, 0, 0, 0, 1, 3, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 3, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 4, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 4, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 1

Views

Author

Seiichi Manyama, Jan 21 2022

Keywords

Comments

Column k is asymptotic to (1 - alfa) * exp(2*sqrt(n*(k*log(alfa)^2 + polylog(2, 1 - alfa)))) * (k*log(alfa)^2 + polylog(2, 1 - alfa))^(1/4) / (2*sqrt(Pi) * sqrt(alfa + 2*k - 2*alfa*k) * n^(3/4)), where alfa is positive real root of the equation alfa^(2*k) + alfa - 1 = 0. - Vaclav Kotesovec, Jan 21 2022

Examples

			Triangle begins:
  1;
  0, 1;
  0, 0, 1;
  1, 0, 0, 1;
  1, 0, 0, 0, 1;
  1, 0, 0, 0, 0, 1;
  1, 0, 0, 0, 0, 0, 1;
  1, 1, 0, 0, 0, 0, 0, 1;
  2, 1, 0, 0, 0, 0, 0, 0, 1;
  2, 1, 0, 0, 0, 0, 0, 0, 0, 1;
  3, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1;
		

Crossrefs

Row sums give A168656.
Column k=1..5 give A006141, A350893, A350894, A350898, A350899.

Programs

  • PARI
    T(n, k) = polcoef(sum(i=1, sqrtint(n\k), x^(k*i^2)/prod(j=1, i-1, 1-x^j+x*O(x^n))), n);
    
  • Ruby
    def partition(n, min, max)
      return [[]] if n == 0
      [max, n].min.downto(min).flat_map{|i| partition(n - i, min, i).map{|rest| [i, *rest]}}
    end
    def A(n)
      a = Array.new(n, 0)
      partition(n, 1, n).each{|ary|
        (1..n).each{|i|
          a[i - 1] += 1 if ary[-1] == i * ary.size
        }
      }
      a
    end
    def A350890(n)
      (1..n).map{|i| A(i)}.flatten
    end
    p A350890(14)

Formula

G.f. of column k: Sum_{i>=1} x^(k*i^2)/Product_{j=1..i-1} (1-x^j).

A237756 Number of partitions of n such that 3*(greatest part) = (number of parts).

Original entry on oeis.org

0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 4, 4, 6, 7, 10, 10, 13, 14, 19, 21, 27, 31, 40, 45, 55, 64, 79, 91, 111, 127, 154, 177, 211, 243, 290, 333, 394, 455, 538, 618, 726, 834, 977, 1121, 1304, 1495, 1738, 1989, 2302, 2633, 3041, 3473, 3999, 4562, 5241
Offset: 1

Views

Author

Clark Kimberling, Feb 13 2014

Keywords

Comments

Also, the number of partitions of n such that (greatest part) = 3*(number of parts).

Examples

			a(15) = 4 counts these partitions: [12,1,1,1], [9,5,1], [9,4,2], [9,3,3].
		

Crossrefs

Column 3 of A350879.

Programs

  • Mathematica
    z = 50; Table[Count[IntegerPartitions[n], p_ /; Max[p] = = 3 Length[p]], {n, z}]
    (* or *)
    nmax = 100; Rest[CoefficientList[Series[Sum[x^(4*k-1) * Product[(1 - x^(3*k+j-1)) / (1 - x^j), {j, 1, k-1}], {k, 1, nmax/4 + 1}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Oct 15 2024 *)
    nmax = 100; p = x^2; s = x^2; Do[p = Normal[Series[p*x^4*(1 - x^(4*k - 1))*(1 - x^(4*k))*(1 - x^(4*k + 1))*(1 - x^(4*k + 2))/((1 - x^(3*k + 2))*(1 - x^(3*k + 1))*(1 - x^(3*k))*(1 - x^k)), {x, 0, nmax}]]; s += p;, {k, 1, nmax/4 + 1}]; Take[CoefficientList[s, x], nmax] (* Vaclav Kotesovec, Oct 16 2024 *)
  • PARI
    my(N=66, x='x+O('x^N)); concat([0, 0], Vec(sum(k=1, N, x^(4*k-1)*prod(j=1, k-1, (1-x^(3*k+j-1))/(1-x^j))))) \\ Seiichi Manyama, Jan 24 2022

Formula

G.f.: Sum_{k>=1} x^(4*k-1) * Product_{j=1..k-1} (1-x^(3*k+j-1))/(1-x^j). - Seiichi Manyama, Jan 24 2022
a(n) ~ Pi^3 * exp(Pi*sqrt(2*n/3)) / (3*2^(5/2)*n^(5/2)). - Vaclav Kotesovec, Oct 17 2024

A373068 Number of partitions of n such that (smallest part) >= 3*(number of parts).

Original entry on oeis.org

1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 10, 11, 12, 14, 15, 17, 19, 21, 23, 26, 28, 31, 34, 37, 40, 44, 47, 51, 55, 59, 63, 69, 73, 79, 85, 92, 98, 107, 114, 124, 133, 144, 154, 168, 179, 194, 208, 225, 240, 260, 277, 299, 319, 343, 365, 393, 417, 447, 476
Offset: 0

Views

Author

Seiichi Manyama, May 22 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=80, x='x+O('x^N)); Vec(sum(k=0, N, x^(3*k^2)/prod(j=1, k, 1-x^j)))

Formula

G.f.: Sum_{k>=0} x^(3*k^2)/Product_{j=1..k} (1-x^j).

A373074 Number of partitions of n such that (smallest part) > 3*(number of parts).

Original entry on oeis.org

1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 11, 11, 13, 14, 16, 17, 20, 21, 24, 26, 29, 31, 35, 37, 41, 44, 48, 51, 56, 59, 64, 68, 74, 78, 85, 90, 98, 104, 113, 120, 131, 139, 151, 161, 175, 186, 202, 215, 233, 248, 268, 285, 308, 327, 352, 374, 402, 426, 457
Offset: 0

Views

Author

Seiichi Manyama, May 22 2024

Keywords

Crossrefs

Programs

Formula

G.f.: Sum_{k>=0} x^(3*k^2+k)/Product_{j=1..k} (1-x^j).

A373075 Number of partitions of n such that (smallest part) > 4*(number of parts).

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 13, 14, 15, 17, 18, 20, 22, 24, 26, 29, 31, 34, 37, 40, 43, 47, 50, 54, 58, 62, 66, 71, 75, 80, 85, 90, 95, 101, 106, 113, 119, 126, 133, 142, 149, 159, 168, 179, 189, 202
Offset: 0

Views

Author

Seiichi Manyama, May 22 2024

Keywords

Comments

This sequence is different from A350894.

Crossrefs

Programs

  • PARI
    my(N=80, x='x+O('x^N)); Vec(sum(k=0, N, x^(4*k^2+k)/prod(j=1, k, 1-x^j)))

Formula

G.f.: Sum_{k>=0} x^(4*k^2+k)/Product_{j=1..k} (1-x^j).

A350892 Number of partitions of n such that 3*(smallest part) = (number of parts).

Original entry on oeis.org

0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 6, 7, 8, 10, 12, 15, 18, 22, 27, 33, 40, 48, 58, 69, 82, 98, 115, 135, 158, 184, 214, 248, 286, 330, 379, 435, 497, 569, 648, 739, 840, 955, 1082, 1228, 1388, 1572, 1775, 2005, 2259, 2549, 2867, 3228, 3626, 4076, 4571, 5131, 5745, 6438, 7199, 8053, 8992, 10045, 11199
Offset: 1

Views

Author

Seiichi Manyama, Jan 21 2022

Keywords

Crossrefs

Column 3 of A350889.

Programs

  • Mathematica
    CoefficientList[Series[Sum[x^(3k^2)/Product[1-x^j,{j,3k-1}],{k,64}],{x,0,64}],x] (* Stefano Spezia, Jan 22 2022 *)
    Table[Count[IntegerPartitions[n],?(3#[[-1]]==Length[#]&)],{n,70}] (* _Harvey P. Dale, Jul 13 2023 *)
  • PARI
    my(N=66, x='x+O('x^N)); concat([0, 0], Vec(sum(k=1, sqrtint(N\3), x^(3*k^2)/prod(j=1, 3*k-1, 1-x^j))))

Formula

G.f.: Sum_{k>=1} x^(3*k^2)/Product_{j=1..3*k-1} (1-x^j).
a(n) ~ c * exp(2*sqrt((5*log(A075778)^2 + 2*polylog(2, 1 - A075778))*n)) / n^(3/4), where c = (3*log(A075778)^2 + polylog(2, A075778^2))^(1/4) / (2*sqrt(3*Pi*(1 + A075778)*(2 + 3*A075778))) = 0.0582980106266835787... - Vaclav Kotesovec, Jan 24 2022, updated Oct 14 2024

A377081 G.f.: Sum_{k>=1} x^(3*k^2) * Product_{j=1..k} (1 + x^j).

Original entry on oeis.org

0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 2, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 2, 2, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 2, 2, 3, 3, 3, 3, 3, 3, 2
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 15 2024

Keywords

Comments

In general, if m > 0 and g.f. = Sum_{k>=1} x^(m*k^2) * Product_{j=1..k} (1 + x^j), then a(n) ~ (1+r) * exp(sqrt((4*m*(2*m+1)*log(r)^2 + 4*polylog(2, 1/(1+r)) - Pi^2/3)*n)) / (2*sqrt((r + 2*m*(1+r))*n)), where r is the smallest positive real root of the equation r^(2*m)*(1+r) = 1.

Crossrefs

Cf. A306734 (m=1), A377080 (m=2).

Programs

  • Mathematica
    nmax = 200; CoefficientList[Series[Sum[x^(3*k^2)*Product[1+x^j, {j, 1, k}], {k, 1, Sqrt[nmax/3]}], {x, 0, nmax}], x]

Formula

a(n) ~ (1+r) * exp(sqrt((84*log(r)^2 + 4*polylog(2, 1/(1+r)) - Pi^2/3)*n)) / (2*sqrt((6 + 7*r)*n)), where r = A230154 = 0.898653712628699293260875722... is the real root of the equation r^6*(1+r) = 1.
Showing 1-7 of 7 results.