A350890 Triangle T(n,k), n >= 1, 1 <= k <= n, read by rows, where T(n,k) is the number of partitions of n such that (smallest part) = k*(number of parts).
1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 2, 1, 0, 0, 0, 0, 0, 0, 1, 2, 1, 0, 0, 0, 0, 0, 0, 0, 1, 3, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 3, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 4, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 4, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 1
Examples
Triangle begins: 1; 0, 1; 0, 0, 1; 1, 0, 0, 1; 1, 0, 0, 0, 1; 1, 0, 0, 0, 0, 1; 1, 0, 0, 0, 0, 0, 1; 1, 1, 0, 0, 0, 0, 0, 1; 2, 1, 0, 0, 0, 0, 0, 0, 1; 2, 1, 0, 0, 0, 0, 0, 0, 0, 1; 3, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1;
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1275 (rows 1..50).
Crossrefs
Programs
-
PARI
T(n, k) = polcoef(sum(i=1, sqrtint(n\k), x^(k*i^2)/prod(j=1, i-1, 1-x^j+x*O(x^n))), n);
-
Ruby
def partition(n, min, max) return [[]] if n == 0 [max, n].min.downto(min).flat_map{|i| partition(n - i, min, i).map{|rest| [i, *rest]}} end def A(n) a = Array.new(n, 0) partition(n, 1, n).each{|ary| (1..n).each{|i| a[i - 1] += 1 if ary[-1] == i * ary.size } } a end def A350890(n) (1..n).map{|i| A(i)}.flatten end p A350890(14)
Formula
G.f. of column k: Sum_{i>=1} x^(k*i^2)/Product_{j=1..i-1} (1-x^j).
Comments