A350892 Number of partitions of n such that 3*(smallest part) = (number of parts).
0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 6, 7, 8, 10, 12, 15, 18, 22, 27, 33, 40, 48, 58, 69, 82, 98, 115, 135, 158, 184, 214, 248, 286, 330, 379, 435, 497, 569, 648, 739, 840, 955, 1082, 1228, 1388, 1572, 1775, 2005, 2259, 2549, 2867, 3228, 3626, 4076, 4571, 5131, 5745, 6438, 7199, 8053, 8992, 10045, 11199
Offset: 1
Keywords
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 1..20000
Programs
-
Mathematica
CoefficientList[Series[Sum[x^(3k^2)/Product[1-x^j,{j,3k-1}],{k,64}],{x,0,64}],x] (* Stefano Spezia, Jan 22 2022 *) Table[Count[IntegerPartitions[n],?(3#[[-1]]==Length[#]&)],{n,70}] (* _Harvey P. Dale, Jul 13 2023 *)
-
PARI
my(N=66, x='x+O('x^N)); concat([0, 0], Vec(sum(k=1, sqrtint(N\3), x^(3*k^2)/prod(j=1, 3*k-1, 1-x^j))))
Formula
G.f.: Sum_{k>=1} x^(3*k^2)/Product_{j=1..3*k-1} (1-x^j).