cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A350892 Number of partitions of n such that 3*(smallest part) = (number of parts).

Original entry on oeis.org

0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 6, 7, 8, 10, 12, 15, 18, 22, 27, 33, 40, 48, 58, 69, 82, 98, 115, 135, 158, 184, 214, 248, 286, 330, 379, 435, 497, 569, 648, 739, 840, 955, 1082, 1228, 1388, 1572, 1775, 2005, 2259, 2549, 2867, 3228, 3626, 4076, 4571, 5131, 5745, 6438, 7199, 8053, 8992, 10045, 11199
Offset: 1

Views

Author

Seiichi Manyama, Jan 21 2022

Keywords

Crossrefs

Column 3 of A350889.

Programs

  • Mathematica
    CoefficientList[Series[Sum[x^(3k^2)/Product[1-x^j,{j,3k-1}],{k,64}],{x,0,64}],x] (* Stefano Spezia, Jan 22 2022 *)
    Table[Count[IntegerPartitions[n],?(3#[[-1]]==Length[#]&)],{n,70}] (* _Harvey P. Dale, Jul 13 2023 *)
  • PARI
    my(N=66, x='x+O('x^N)); concat([0, 0], Vec(sum(k=1, sqrtint(N\3), x^(3*k^2)/prod(j=1, 3*k-1, 1-x^j))))

Formula

G.f.: Sum_{k>=1} x^(3*k^2)/Product_{j=1..3*k-1} (1-x^j).
a(n) ~ c * exp(2*sqrt((5*log(A075778)^2 + 2*polylog(2, 1 - A075778))*n)) / n^(3/4), where c = (3*log(A075778)^2 + polylog(2, A075778^2))^(1/4) / (2*sqrt(3*Pi*(1 + A075778)*(2 + 3*A075778))) = 0.0582980106266835787... - Vaclav Kotesovec, Jan 24 2022, updated Oct 14 2024