cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A350896 Number of partitions of n such that 4*(smallest part) = (number of parts).

Original entry on oeis.org

0, 0, 0, 1, 1, 2, 3, 4, 5, 7, 8, 10, 12, 14, 16, 20, 22, 26, 30, 35, 40, 48, 55, 65, 76, 90, 105, 126, 147, 175, 206, 244, 286, 339, 396, 467, 545, 638, 741, 865, 1000, 1160, 1337, 1543, 1770, 2035, 2325, 2660, 3029, 3451, 3916, 4447, 5029, 5691, 6419, 7242, 8146, 9167, 10286, 11546, 12930, 14481, 16185
Offset: 1

Views

Author

Seiichi Manyama, Jan 21 2022

Keywords

Examples

			For n=7 there are a(7)=3 such partitions: [1,2,2,2], [1,1,2,3] and [1,1,1,4]. - _R. J. Mathar_, Jun 20 2022
		

Crossrefs

Column 4 of A350889.
Cf. A168657.

Programs

  • Mathematica
    CoefficientList[Series[Sum[x^(4k^2)/Product[1-x^j,{j,4k-1}],{k,63}],{x,0,63}],x] (* Stefano Spezia, Jan 22 2022 *)
  • PARI
    my(N=66, x='x+O('x^N)); concat([0, 0, 0], Vec(sum(k=1, sqrtint(N\4), x^(4*k^2)/prod(j=1, 4*k-1, 1-x^j))))

Formula

G.f.: Sum_{k>=1} x^(4*k^2)/Product_{j=1..4*k-1} (1-x^j).
a(n) ~ c * exp(Pi*sqrt(2*n/5)) / n^(3/4), where c = (3 - sqrt(5))^(1/4) / (8*sqrt(5)) = 0.05226232058... - Vaclav Kotesovec, Jan 25 2022, updated Oct 13 2024