A350896 Number of partitions of n such that 4*(smallest part) = (number of parts).
0, 0, 0, 1, 1, 2, 3, 4, 5, 7, 8, 10, 12, 14, 16, 20, 22, 26, 30, 35, 40, 48, 55, 65, 76, 90, 105, 126, 147, 175, 206, 244, 286, 339, 396, 467, 545, 638, 741, 865, 1000, 1160, 1337, 1543, 1770, 2035, 2325, 2660, 3029, 3451, 3916, 4447, 5029, 5691, 6419, 7242, 8146, 9167, 10286, 11546, 12930, 14481, 16185
Offset: 1
Keywords
Examples
For n=7 there are a(7)=3 such partitions: [1,2,2,2], [1,1,2,3] and [1,1,1,4]. - _R. J. Mathar_, Jun 20 2022
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
CoefficientList[Series[Sum[x^(4k^2)/Product[1-x^j,{j,4k-1}],{k,63}],{x,0,63}],x] (* Stefano Spezia, Jan 22 2022 *)
-
PARI
my(N=66, x='x+O('x^N)); concat([0, 0, 0], Vec(sum(k=1, sqrtint(N\4), x^(4*k^2)/prod(j=1, 4*k-1, 1-x^j))))
Formula
G.f.: Sum_{k>=1} x^(4*k^2)/Product_{j=1..4*k-1} (1-x^j).
a(n) ~ c * exp(Pi*sqrt(2*n/5)) / n^(3/4), where c = (3 - sqrt(5))^(1/4) / (8*sqrt(5)) = 0.05226232058... - Vaclav Kotesovec, Jan 25 2022, updated Oct 13 2024