cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A350890 Triangle T(n,k), n >= 1, 1 <= k <= n, read by rows, where T(n,k) is the number of partitions of n such that (smallest part) = k*(number of parts).

Original entry on oeis.org

1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 2, 1, 0, 0, 0, 0, 0, 0, 1, 2, 1, 0, 0, 0, 0, 0, 0, 0, 1, 3, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 3, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 4, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 4, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 1

Views

Author

Seiichi Manyama, Jan 21 2022

Keywords

Comments

Column k is asymptotic to (1 - alfa) * exp(2*sqrt(n*(k*log(alfa)^2 + polylog(2, 1 - alfa)))) * (k*log(alfa)^2 + polylog(2, 1 - alfa))^(1/4) / (2*sqrt(Pi) * sqrt(alfa + 2*k - 2*alfa*k) * n^(3/4)), where alfa is positive real root of the equation alfa^(2*k) + alfa - 1 = 0. - Vaclav Kotesovec, Jan 21 2022

Examples

			Triangle begins:
  1;
  0, 1;
  0, 0, 1;
  1, 0, 0, 1;
  1, 0, 0, 0, 1;
  1, 0, 0, 0, 0, 1;
  1, 0, 0, 0, 0, 0, 1;
  1, 1, 0, 0, 0, 0, 0, 1;
  2, 1, 0, 0, 0, 0, 0, 0, 1;
  2, 1, 0, 0, 0, 0, 0, 0, 0, 1;
  3, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1;
		

Crossrefs

Row sums give A168656.
Column k=1..5 give A006141, A350893, A350894, A350898, A350899.

Programs

  • PARI
    T(n, k) = polcoef(sum(i=1, sqrtint(n\k), x^(k*i^2)/prod(j=1, i-1, 1-x^j+x*O(x^n))), n);
    
  • Ruby
    def partition(n, min, max)
      return [[]] if n == 0
      [max, n].min.downto(min).flat_map{|i| partition(n - i, min, i).map{|rest| [i, *rest]}}
    end
    def A(n)
      a = Array.new(n, 0)
      partition(n, 1, n).each{|ary|
        (1..n).each{|i|
          a[i - 1] += 1 if ary[-1] == i * ary.size
        }
      }
      a
    end
    def A350890(n)
      (1..n).map{|i| A(i)}.flatten
    end
    p A350890(14)

Formula

G.f. of column k: Sum_{i>=1} x^(k*i^2)/Product_{j=1..i-1} (1-x^j).

A373070 Number of partitions of n such that (smallest part) >= 5*(number of parts).

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 14, 15, 16, 17, 19, 20, 22, 24, 26, 28, 31, 33, 36, 39, 42, 45, 49, 52, 56, 60, 64, 68, 73, 77, 82, 87, 92, 97, 103, 108, 114, 120, 126, 132, 139, 145, 153, 160, 168, 176, 186, 194
Offset: 0

Views

Author

Seiichi Manyama, May 22 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=90, x='x+O('x^N)); Vec(sum(k=0, N, x^(5*k^2)/prod(j=1, k, 1-x^j)))

Formula

G.f.: Sum_{k>=0} x^(5*k^2)/Product_{j=1..k} (1-x^j).

A373076 Number of partitions of n such that (smallest part) > 5*(number of parts).

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 14, 14, 16, 16, 18, 19, 21, 22, 25, 26, 29, 31, 34, 36, 40, 42, 46, 49, 53, 56, 61, 64, 69, 73, 78, 82, 88, 92, 98, 103, 109, 114, 121, 126, 133, 139, 146, 152, 161
Offset: 0

Views

Author

Seiichi Manyama, May 22 2024

Keywords

Comments

This sequence is different from A350898.

Crossrefs

Programs

Formula

G.f.: Sum_{k>=0} x^(5*k^2+k)/Product_{j=1..k} (1-x^j).

A348164 Number of partitions of n such that 5*(greatest part) = (number of parts).

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 3, 3, 5, 5, 7, 8, 10, 11, 15, 16, 20, 22, 26, 28, 35, 38, 46, 52, 62, 70, 85, 95, 112, 127, 148, 166, 195, 219, 254, 288, 332, 375, 435, 489, 562, 635, 726, 817, 936, 1051, 1198, 1348, 1531, 1721, 1957, 2196, 2489
Offset: 1

Views

Author

Seiichi Manyama, Jan 25 2022

Keywords

Comments

Also, the number of partitions of n such that (greatest part) = 5*(number of parts).

Examples

			a(19) = 3 counts these partitions:
[3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[2, 2, 2, 2, 2, 2, 2, 2, 2, 1].
		

Crossrefs

Column 5 of A350879.

Programs

  • Mathematica
    nmax = 100; Rest[CoefficientList[Series[Sum[x^(6*k-1) * Product[(1 - x^(5*k+j-1)) / (1 - x^j), {j, 1, k-1}], {k, 1, nmax/6 + 1}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Oct 15 2024 *)
    nmax = 100; p = x^4; s = x^4; Do[p = Normal[Series[p*x^6*(1 - x^(6*k - 1))*(1 - x^(6*k))*(1 - x^(6*k + 1))*(1 - x^(6*k + 2))*(1 - x^(6*k + 3))*(1 - x^(6*k + 4))/((1 - x^(5*k + 4))*(1 - x^(5*k + 3))*(1 - x^(5*k + 2))*(1 - x^(5*k + 1))*(1 - x^(5*k))*(1 - x^k)), {x, 0, nmax}]]; s += p;, {k, 1, nmax/6 + 1}]; Take[CoefficientList[s, x], nmax] (* Vaclav Kotesovec, Oct 16 2024 *)
  • PARI
    my(N=66, x='x+O('x^N)); concat([0, 0, 0, 0], Vec(sum(k=1, N, x^(6*k-1)*prod(j=1, k-1, (1-x^(5*k+j-1))/(1-x^j)))))

Formula

G.f.: Sum_{k>=1} x^(6*k-1) * Product_{j=1..k-1} (1-x^(5*k+j-1))/(1-x^j).
a(n) ~ 5 * Pi^5 * exp(Pi*sqrt(2*n/3)) / (9 * 2^(3/2) * n^(7/2)). - Vaclav Kotesovec, Oct 17 2024
Showing 1-4 of 4 results.