A351011 Numbers k such that the k-th composition in standard order has even length and alternately equal and unequal parts, i.e., all run-lengths equal to 2.
0, 3, 10, 36, 43, 58, 136, 147, 228, 235, 528, 547, 586, 676, 698, 904, 915, 2080, 2115, 2186, 2347, 2362, 2696, 2707, 2788, 2795, 3600, 3619, 3658, 3748, 3770, 8256, 8323, 8458, 8740, 8747, 8762, 9352, 9444, 9451, 10768, 10787, 10826, 11144, 11155, 14368
Offset: 1
Keywords
Examples
The terms together with their binary expansions and standard compositions begin: 0: 0 () 3: 11 (1,1) 10: 1010 (2,2) 36: 100100 (3,3) 43: 101011 (2,2,1,1) 58: 111010 (1,1,2,2) 136: 10001000 (4,4) 147: 10010011 (3,3,1,1) 228: 11100100 (1,1,3,3) 235: 11101011 (1,1,2,2,1,1) 528: 1000010000 (5,5) 547: 1000100011 (4,4,1,1) 586: 1001001010 (3,3,2,2) 676: 1010100100 (2,2,3,3) 698: 1010111010 (2,2,1,1,2,2) 904: 1110001000 (1,1,4,4) 915: 1110010011 (1,1,3,3,1,1)
Crossrefs
The case of twins (binary weight 2) is A000120.
All terms are evil numbers A001969.
These compositions are counted by A003242 interspersed with 0's.
The Heinz numbers of these compositions are A062503.
This is the anti-run case of A351010.
A011782 counts compositions.
A351014 counts distinct runs in standard compositions.
Cf. A008965, A018819, A027383, A032020, A035363, A088218, A106356, A122129, A122134, A238279, A351007.
Selected statistics of standard compositions:
- Length is A000120.
- Sum is A070939.
- Heinz number is A333219.
- Number of distinct parts is A334028.
Selected classes of standard compositions:
- Strict compositions are A233564.
- Constant compositions are A272919.
Programs
-
Mathematica
stc[n_]:=Differences[Prepend[Join@@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse; Select[Range[0,1000],And@@(#==2&)/@Length/@Split[stc[#]]&]
Comments