A351061 Smallest positive integer whose square can be written as the sum of n positive perfect squares.
1, 5, 3, 2, 4, 3, 4, 4, 3, 4, 5, 6, 4, 5, 6, 4, 5, 6, 5, 6, 6, 5, 7, 6, 5, 7, 6, 6, 7, 6, 7, 7, 6, 7, 7, 6, 7, 7, 8, 7, 7, 8, 7, 8, 8, 7, 8, 8, 7, 8, 9, 8, 8, 9, 8, 8, 9, 8, 9, 9, 8, 9, 9, 8, 9, 9, 9, 10, 9, 9, 10, 9, 9, 10, 9, 10, 10, 9, 10, 10, 9, 10, 10, 10
Offset: 1
Keywords
Examples
a(1) = 1 because 1^2 = 1^2. a(2) = 5 because 5^2 = 3^2 + 4^2. a(3) = 3 because 3^2 = 1^2 + 2*(2^2). a(4) = 2 because 2^2 = 4*(1^2). a(5) = 4 because 4^2 = 3*(1^2) + 2^2 + 3^2. a(6) = 3 because 3^2 = 5*(1^2) + 2^2. a(7) = 4 because 4^2 = 4*(1^2) + 3*(2^2).
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A215539.
Programs
-
Maple
b:= proc(n, i, t) option remember; n>=t and (n=t or (i>0 and (b(n, i-1, t) or i^2<=n and b(n-i^2, i, t-1)))) end: a:= proc(n) option remember; local k; for k while not b(k^2, k, n) do od; k end: seq(a(n), n=1..100); # Alois P. Heinz, Jan 31 2022
-
Mathematica
b[n_, i_, t_] := b[n, i, t] = n >= t && (n == t || (i > 0 && (b[n, i - 1, t] || i^2 <= n && b[n - i^2, i, t - 1]))); a[n_] := a[n] = Module[{k}, For[k = 1, !b[k^2, k, n], k++]; k]; Table[a[n], {n, 1, 100}] (* Jean-François Alcover, May 14 2022, after Alois P. Heinz *)
Formula
a(n) = sqrt(A215539(n)). - Jinyuan Wang, Jan 30 2022
Extensions
More terms from Jinyuan Wang, Jan 30 2022
Comments