cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A351098 Numbers k such that the maximal digit value in primorial base expansion of the arithmetic derivative of k is less than the maximal exponent in the prime factorization of k.

Original entry on oeis.org

8, 9, 16, 24, 28, 32, 40, 45, 48, 81, 96, 108, 112, 120, 125, 128, 136, 160, 184, 189, 192, 198, 208, 212, 225, 236, 244, 250, 256, 270, 288, 296, 352, 361, 459, 507, 625, 640, 768, 800, 832, 864, 896, 928, 960, 972, 1008, 1024, 1056, 1088, 1104, 1120, 1152, 1168, 1184, 1232, 1272, 1280, 1320, 1344, 1350, 1408, 1440
Offset: 1

Views

Author

Antti Karttunen, Feb 03 2022

Keywords

Comments

Numbers k such that A328390(k) < A051903(k).
Numbers k for which A051903(A327859(n)) < A051903(k).
These seem to be rarer than A351075. All terms are nonsquarefree.

Crossrefs

Positions of negative terms in A351097. Subsequence of A013929 and of A351099.
Cf. A003415, A051903, A276086, A327859, A328390, A369637 (characteristic function).
Cf. also A351075.

Programs

  • PARI
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    A051903(n) = if((1==n),0,vecmax(factor(n)[, 2]));
    A328114(n) = { my(s=0, p=2); while(n, s = max(s, (n%p)); n = n\p; p = nextprime(1+p)); (s); };
    isA351098(n) = (A328114(A003415(n)) < A051903(n));
    
  • PARI
    \\ Or see A369637.

A351099 Composite numbers k such that the maximal digit value in primorial base expansion of the arithmetic derivative of k is not larger than the maximal exponent in the prime factorization of k.

Original entry on oeis.org

4, 8, 9, 10, 12, 14, 15, 16, 24, 25, 28, 30, 32, 36, 40, 45, 48, 49, 50, 54, 56, 58, 62, 64, 68, 74, 81, 87, 96, 98, 99, 108, 112, 120, 125, 128, 136, 155, 156, 160, 161, 162, 184, 189, 192, 196, 198, 203, 204, 208, 209, 210, 212, 217, 220, 221, 224, 225, 236, 244, 246, 247, 250, 252, 256, 268, 270, 272, 280, 282, 288
Offset: 1

Views

Author

Antti Karttunen, Feb 03 2022

Keywords

Comments

Composite k such that A328390(k) <= A051903(k).
Composite k for which A051903(A327859(n)) <= A051903(k).

Crossrefs

Programs

  • PARI
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    A051903(n) = if((1==n),0,vecmax(factor(n)[, 2]));
    A328114(n) = { my(s=0, p=2); while(n, s = max(s, (n%p)); n = n\p; p = nextprime(1+p)); (s); };
    isA351099(n) = (n>1&&!isprime(n)&&(A328114(A003415(n)) <= A051903(n)));

A369646 Numbers k such that the difference A051903(k) - A328114(A003415(k)) reaches a new maximum in range 1..k, where A051903 is the maximal exponent in the prime factorization of n, A328114 is the maximal digit in the primorial base expansion of n, and A003415 is the arithmetic derivative.

Original entry on oeis.org

1, 8, 16, 832, 1024, 95232, 131072, 2097152, 1006632960, 1090519040
Offset: 1

Views

Author

Antti Karttunen, Feb 02 2024

Keywords

Examples

			           k   factorization    max.exp.  k' in primorial  max digit  diff
                                                  base
           1                        0,              0,        0,       0
           8 = 2^3,                 3,            200,        2,       1
          16 = 2^4,                 4,           1010,        1,       3
         832 = 2^6 * 13^1,          6,         111120,        2,       4
        1024 = 2^10,               10,         222310,        3,       7
       95232 = 2^10 * 3^1 * 31^1,  10,       10021220,        2,       8
      131072 = 2^17,               17,       23132010,        3,      14
     2097152 = 2^21,               21,      252354100,        5,      16
  1006632960 = 2^26 * 3^1 * 5^1,   26,    23194866010,        9,      17
  1090519040 = 2^24 * 5^1 * 13^1,  24,    22053155300,        5,      19.
Here k' stands for the arithmetic derivative of k, A003415(k). Primorial base expansion is obtained with A049345.
		

Crossrefs

Positions of records for -A351097(n).
After the initial 1, a subsequence of A351098.
Cf. also A369645, A369647.

Programs

  • PARI
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    A051903(n) = if((1==n),0,vecmax(factor(n)[, 2]));
    A328114(n) = { my(s=0, p=2); while(n, s = max(s, (n%p)); n = n\p; p = nextprime(1+p)); (s); };
    A351097(n) = (A328114(A003415(n))-A051903(n));
    m=A351097(1); print1(1,", "); for(n=2,oo,x=A351097(n); if(x
    				
Showing 1-3 of 3 results.