cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A351131 Triangular numbers (A000217) whose second arithmetic derivative (A068346) is also a triangular number.

Original entry on oeis.org

0, 1, 3, 6, 10, 66, 78, 105, 231, 325, 465, 561, 595, 861, 1378, 2211, 2278, 2485, 3081, 3570, 3655, 4278, 4465, 5253, 6441, 6670, 8515, 8778, 9453, 9870, 10011, 10153, 12561, 13530, 15051, 18145, 21115, 21945, 22578, 23005, 25878, 27966, 28441, 40470, 45753
Offset: 1

Views

Author

Marius A. Burtea, Feb 07 2022

Keywords

Examples

			6 = A000217(3), 6'' = 5' = 1 = A000217(1), so 6 is a term.
66 = A000217(11), 66'' = 61' = 1 = A000217(1), so 66 is a term.
325 = A000217(25), 325'' = 155' = 36 = A000217(8), so 325 is a term.
		

Crossrefs

Programs

  • Magma
    tr:=func;  f:=func; [n:n in [d*(d+1) div 2:d in [0..310]]| tr(Floor(f(Floor(f(n)))))];
    
  • Mathematica
    d[0] = d[1] = 0; d[n_] := n*Plus @@ ((Last[#]/First[#]) & /@ FactorInteger[n]); Select[Table[n*(n + 1)/2, {n, 0, 300}], IntegerQ[Sqrt[8*d[d[#]] + 1]] &] (* Amiram Eldar, Feb 07 2022 *)
  • PARI
    der(n) = my(f=factor(n)); vecsum([n/f[1]*f[2]|f<-factor(n+!n)~]); \\ A003415
    isok(m) = ispolygonal(m, 3) && ispolygonal(der(der(m)), 3); \\ Michel Marcus, Feb 16 2022
    
  • Python
    from itertools import count, islice
    from sympy import factorint, integer_nthroot, isprime, nextprime
    def istri(n): return integer_nthroot(8*n+1, 2)[1]
    def ad(n):
        return 0 if n < 2 else sum(n*e//p for p, e in factorint(n).items())
    def agen(): # generator of terms
        for i in count(0):
            t = i*(i+1)//2
            if istri(ad(ad(t))):
                yield t
    print(list(islice(agen(), 45))) # Michael S. Branicky, Feb 16 2022