A351131 Triangular numbers (A000217) whose second arithmetic derivative (A068346) is also a triangular number.
0, 1, 3, 6, 10, 66, 78, 105, 231, 325, 465, 561, 595, 861, 1378, 2211, 2278, 2485, 3081, 3570, 3655, 4278, 4465, 5253, 6441, 6670, 8515, 8778, 9453, 9870, 10011, 10153, 12561, 13530, 15051, 18145, 21115, 21945, 22578, 23005, 25878, 27966, 28441, 40470, 45753
Offset: 1
Keywords
Examples
6 = A000217(3), 6'' = 5' = 1 = A000217(1), so 6 is a term. 66 = A000217(11), 66'' = 61' = 1 = A000217(1), so 66 is a term. 325 = A000217(25), 325'' = 155' = 36 = A000217(8), so 325 is a term.
Programs
-
Magma
tr:=func
; f:=func ; [n:n in [d*(d+1) div 2:d in [0..310]]| tr(Floor(f(Floor(f(n)))))]; -
Mathematica
d[0] = d[1] = 0; d[n_] := n*Plus @@ ((Last[#]/First[#]) & /@ FactorInteger[n]); Select[Table[n*(n + 1)/2, {n, 0, 300}], IntegerQ[Sqrt[8*d[d[#]] + 1]] &] (* Amiram Eldar, Feb 07 2022 *)
-
PARI
der(n) = my(f=factor(n)); vecsum([n/f[1]*f[2]|f<-factor(n+!n)~]); \\ A003415 isok(m) = ispolygonal(m, 3) && ispolygonal(der(der(m)), 3); \\ Michel Marcus, Feb 16 2022
-
Python
from itertools import count, islice from sympy import factorint, integer_nthroot, isprime, nextprime def istri(n): return integer_nthroot(8*n+1, 2)[1] def ad(n): return 0 if n < 2 else sum(n*e//p for p, e in factorint(n).items()) def agen(): # generator of terms for i in count(0): t = i*(i+1)//2 if istri(ad(ad(t))): yield t print(list(islice(agen(), 45))) # Michael S. Branicky, Feb 16 2022