cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A351156 Expansion of e.g.f. (1 - x^3/6)^(-x).

Original entry on oeis.org

1, 0, 0, 0, 4, 0, 0, 70, 560, 0, 5600, 92400, 369600, 1201200, 30830800, 252252000, 1210809600, 19059040000, 240143904000, 1738184448000, 22451549120000, 342205063200000, 3417705170880000, 43866126368064000, 732641268463104000, 9234973972224000000
Offset: 0

Views

Author

Seiichi Manyama, May 02 2022

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace((1-x^3/6)^(-x)))
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(-x*log(1-x^3/6))))
    
  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=(i-1)!*sum(j=2, (i+2)\3, (3*j-2)/((j-1)*6^(j-1))*v[i-3*j+3]/(i-3*j+2)!)); v;
    
  • PARI
    a(n) = n!*sum(k=0, n\3, abs(stirling(k, n-3*k, 1))/(6^k*k!));

Formula

a(0) = 1; a(n) = (n-1)! * Sum_{k=2..floor((n+2)/3)} (3*k-2)/((k-1) * 6^(k-1)) * a(n-3*k+2)/(n-3*k+2)!.
a(n) = n! * Sum_{k=0..floor(n/3)} |Stirling1(k,n-3*k)|/(6^k*k!).
a(n) ~ sqrt(2*Pi) * n^(n - 1/2 + 6^(1/3)) / (Gamma(6^(1/3)) * 3^(6^(1/3)) * exp(n) * 6^(n/3)). - Vaclav Kotesovec, May 04 2022