A353053 Decimal expansion of Pi * BesselY(0,2) / 2 - gamma * BesselJ(0,2).
6, 7, 2, 4, 6, 2, 9, 6, 6, 9, 3, 6, 3, 6, 3, 6, 2, 4, 9, 2, 8, 3, 3, 6, 1, 9, 7, 8, 6, 2, 3, 0, 3, 1, 8, 4, 8, 1, 6, 8, 2, 4, 7, 3, 0, 5, 5, 3, 0, 1, 7, 1, 3, 8, 9, 7, 3, 8, 1, 2, 1, 3, 3, 7, 5, 2, 1, 0, 2, 8, 6, 5, 3, 6, 3, 9, 1, 4, 0, 5, 9, 6, 9, 8, 8, 2, 4, 7, 1, 4, 3, 2, 6, 7, 6, 4, 2, 7, 1, 3, 9, 1, 3, 7, 3, 1, 3, 2, 0, 5
Offset: 0
Examples
0.672462966936363624928336197862303184816824730553017...
Crossrefs
Programs
-
Mathematica
RealDigits[Pi BesselY[0, 2]/2 - EulerGamma BesselJ[0, 2], 10, 110] [[1]]
-
PARI
Pi*bessely(0,2)/2 - Euler*besselj(0,2) \\ Michel Marcus, Apr 20 2022
Formula
Equals Sum_{k>=1} (-1)^(k+1) * H(k) / (k!)^2, where H(k) is the k-th harmonic number.