A351193 Sum of the 5th powers of primes dividing n.
0, 32, 243, 32, 3125, 275, 16807, 32, 243, 3157, 161051, 275, 371293, 16839, 3368, 32, 1419857, 275, 2476099, 3157, 17050, 161083, 6436343, 275, 3125, 371325, 243, 16839, 20511149, 3400, 28629151, 32, 161294, 1419889, 19932, 275, 69343957, 2476131, 371536, 3157
Offset: 1
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Maple
f:= n -> add(p^5, p = numtheory:-factorset(n)): map(f, [$1..100]); # Robert Israel, Feb 18 2022
-
Mathematica
Array[DivisorSum[#, #^5 &, PrimeQ] &, 50] f[p_, e_] := p^5; a[n_] := Plus @@ f @@@ FactorInteger[n]; a[1] = 0; Array[a, 100] (* Amiram Eldar, Jun 20 2022 *)
Formula
a(n) = Sum_{p|n, p prime} p^5.
G.f.: Sum_{k>=1} prime(k)^5 * x^prime(k) / (1 - x^prime(k)). - Ilya Gutkovskiy, Feb 16 2022
Additive with a(p^e) = p^5. - Amiram Eldar, Jun 20 2022
a(n) = Sum_{d|n} d^5 * c(d), where c = A010051. - Wesley Ivan Hurt, Jun 22 2024
Comments