cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A351193 Sum of the 5th powers of primes dividing n.

Original entry on oeis.org

0, 32, 243, 32, 3125, 275, 16807, 32, 243, 3157, 161051, 275, 371293, 16839, 3368, 32, 1419857, 275, 2476099, 3157, 17050, 161083, 6436343, 275, 3125, 371325, 243, 16839, 20511149, 3400, 28629151, 32, 161294, 1419889, 19932, 275, 69343957, 2476131, 371536, 3157
Offset: 1

Views

Author

Wesley Ivan Hurt, Feb 04 2022

Keywords

Comments

Inverse Möbius transform of n^5 * c(n), where c(n) is the prime characteristic (A010051). - Wesley Ivan Hurt, Jun 22 2024

Crossrefs

Sum of the k-th powers of the primes dividing n for k=0..10 : A001221 (k=0), A008472 (k=1), A005063 (k=2), A005064 (k=3), A005065 (k=4), this sequence (k=5), A351194 (k=6), A351195 (k=7), A351196 (k=8), A351197 (k=9), A351198 (k=10).
Cf. A010051.

Programs

  • Maple
    f:= n -> add(p^5, p = numtheory:-factorset(n)):
    map(f, [$1..100]); # Robert Israel, Feb 18 2022
  • Mathematica
    Array[DivisorSum[#, #^5 &, PrimeQ] &, 50]
    f[p_, e_] := p^5; a[n_] := Plus @@ f @@@ FactorInteger[n]; a[1] = 0; Array[a, 100] (* Amiram Eldar, Jun 20 2022 *)

Formula

a(n) = Sum_{p|n, p prime} p^5.
G.f.: Sum_{k>=1} prime(k)^5 * x^prime(k) / (1 - x^prime(k)). - Ilya Gutkovskiy, Feb 16 2022
Additive with a(p^e) = p^5. - Amiram Eldar, Jun 20 2022
a(n) = Sum_{d|n} d^5 * c(d), where c = A010051. - Wesley Ivan Hurt, Jun 22 2024