A351195 Sum of the 7th powers of the primes dividing n.
0, 128, 2187, 128, 78125, 2315, 823543, 128, 2187, 78253, 19487171, 2315, 62748517, 823671, 80312, 128, 410338673, 2315, 893871739, 78253, 825730, 19487299, 3404825447, 2315, 78125, 62748645, 2187, 823671, 17249876309, 80440, 27512614111, 128, 19489358, 410338801
Offset: 1
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
Array[DivisorSum[#, #^7 &, PrimeQ] &, 50] f[p_, e_] := p^7; a[n_] := Plus @@ f @@@ FactorInteger[n]; a[1] = 0; Array[a, 100] (* Amiram Eldar, Jun 20 2022 *)
Formula
a(n) = Sum_{p|n, p prime} p^7.
G.f.: Sum_{k>=1} prime(k)^7 * x^prime(k) / (1 - x^prime(k)). - Ilya Gutkovskiy, Feb 16 2022
Additive with a(p^e) = p^7. - Amiram Eldar, Jun 20 2022
a(n) = Sum_{d|n} d^7 * c(d), where c = A010051. - Wesley Ivan Hurt, Jun 22 2024
Comments