cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A351089 Number of iterations of map x -> A003415(x) needed to reach a number >= A276086(n), when starting from x = n, or -1 if such number is never reached.

Original entry on oeis.org

-1, -1, -1, -1, -1, -1, 0, -1, 2, -1, -1, -1, 2, -1, -1, 6, 4, -1, -1, -1, 6, -1, -1, -1, 6, -1, 11, -1, 8, -1, 0, 0, 0, -1, -1, 5, 0, -1, -1, 5, 7, -1, -1, -1, 4, 8, -1, -1, 4, -1, 10, 10, 8, -1, 7, 10, 8, -1, -1, -1, 0, -1, -1, 8, 2, -1, -1, -1, 6, 11, -1, -1, 6, -1, 10, 10, 8, -1, -1, -1, 7, 9, -1, -1, 7, -1, 14, 11, 9
Offset: 0

Views

Author

Antti Karttunen, Feb 05 2022

Keywords

Examples

			a(0) = -1 because A003415^(k)(0) = 0 for all values of k >= 0 (i.e., regardless of how many times we apply the arithmetic derivative), and 0 < A276086(0) = 1.
a(1) = -1 because A003415^(k)(1) = 0 for all values of k >= 1, and both 1 and 0 are less than A276086(1) = 2.
a(4) = -1 because A003415^(k)(4) = 4 for all values of k >= 0 (i.e., regardless of how many times we apply the arithmetic derivative), and 4 < A276086(4) = 9.
a(6) = 0 because 6 is already >= A276086(6) = 5 before any iterations.
a(8) = 2 because it takes two iterations with A003415 as 8 -> 12 -> 16 to obtain a number >= A276086(8) = 15.
		

Crossrefs

Cf. A003415, A276086, A349908 (positions of records), A351226 (positions of zeros), A351229 (positions of ones).
Cf. also A351088.

Programs

  • PARI
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
    A351089(n) = { my(u=A276086(n),i=0,prev_n=-1); while(n>0, if(n>=u, return(i)); prev_n = n; n = A003415(n); if(n==prev_n, return(-1)); i++); (-1); };

A351225 a(n) = A276086(n) - n, where A276086 is the primorial base exp-function.

Original entry on oeis.org

1, 1, 1, 3, 5, 13, -1, 3, 7, 21, 35, 79, 13, 37, 61, 135, 209, 433, 107, 231, 355, 729, 1103, 2227, 601, 1225, 1849, 3723, 5597, 11221, -23, -17, -11, 9, 29, 91, -1, 33, 67, 171, 275, 589, 133, 307, 481, 1005, 1529, 3103, 827, 1701, 2575, 5199, 7823, 15697, 4321, 8695, 13069, 26193, 39317, 78691, -11, 37, 85, 231
Offset: 0

Views

Author

Antti Karttunen, Feb 05 2022

Keywords

Comments

Sequence contains no zeros because the parity of A276086(n) is opposite to that of n.

Crossrefs

Cf. A276086, A351226 (positions of negative terms), A351227 (of positive terms).
Cf. also A350074.

Programs

  • Mathematica
    Array[Block[{i, m, n = #, p}, m = i = 1; While[n > 0, p = Prime[i]; m *= p^Mod[n, p]; n = Quotient[n, p]; i++]; m - #] &, 64, 0] (* Michael De Vlieger, Feb 05 2022 *)
  • PARI
    A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
    A351225(n) = (A276086(n)-n);

A351227 Numbers k for which A276086(k) > k, where A276086 is the primorial base exp-function.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87
Offset: 1

Views

Author

Antti Karttunen, Feb 05 2022

Keywords

Crossrefs

Cf. A276086, A351226 (complement), A351229 (subsequence).
Indices of positive terms in A351225.

Programs

  • Mathematica
    Select[Range[0, 87], Block[{i, m, n = #, p}, m = i = 1; While[n > 0, p = Prime[i]; m *= p^Mod[n, p]; n = Quotient[n, p]; i++]; m > #] &] (* Michael De Vlieger, Feb 05 2022 *)
  • PARI
    A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
    isA351227(n) = (A276086(n)>n);
Showing 1-3 of 3 results.