A351248 a(n) = n^8 * Sum_{p|n, p prime} 1/p^8.
0, 1, 1, 256, 1, 6817, 1, 65536, 6561, 390881, 1, 1745152, 1, 5765057, 397186, 16777216, 1, 44726337, 1, 100065536, 5771362, 214359137, 1, 446758912, 390625, 815730977, 43046721, 1475854592, 1, 2664570241, 1, 4294967296, 214365442, 6975757697, 6155426, 11449942272
Offset: 1
Keywords
Examples
a(6) = 6817; a(6) = 6^8 * Sum_{p|6, p prime} 1/p^8 = 1679616 * (1/2^8 + 1/3^8) = 6817.
Crossrefs
Programs
-
Mathematica
Array[#^8*DivisorSum[#, 1/#^8 &, PrimeQ] &, 36] (* Stefano Spezia, Jul 15 2025 *)
-
Python
from sympy import primefactors def A351248(n): return sum((n//p)**8 for p in primefactors(n)) # Chai Wah Wu, Feb 05 2022
Formula
a(A000040(n)) = 1.
From Wesley Ivan Hurt, Jul 15 2025: (Start)
a(n) = Sum_{d|n} c(d) * (n/d)^8, where c = A010051.
a(p^k) = p^(8*k-8) for p prime and k>=1. (End)
Comments