cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A324583 Numbers k such that k and A276086(k) are coprime, where A276086 is the primorial base exp-function.

Original entry on oeis.org

0, 1, 2, 4, 5, 6, 7, 8, 11, 12, 13, 14, 16, 17, 18, 19, 22, 23, 24, 26, 28, 29, 30, 31, 32, 34, 36, 37, 38, 41, 43, 44, 46, 47, 48, 52, 53, 54, 58, 59, 60, 61, 62, 64, 65, 66, 67, 68, 71, 72, 73, 74, 76, 78, 79, 82, 83, 86, 88, 89, 90, 92, 94, 95, 96, 97, 101, 102, 103, 104, 106, 107, 108, 109, 113, 114, 116, 118, 120, 121
Offset: 1

Views

Author

Antti Karttunen, Mar 10 2019

Keywords

Comments

Numbers k for which A324198(k) = 1.
For terms k > 0 it holds that:
A000005(A324580(k)) = A000005(k) * A324655(k),
A000010(A324580(k)) = A000010(k) * A324650(k),
A000203(A324580(k)) = A000203(k) * A324653(k),
and similarly for any multiplicative function.

Crossrefs

Cf. A324584 (complement), A356162 (characteristic function).
Some subsequences are: A055932A025487A002182, and also A002110.
Subsequence of A356316.
Positions of 1's in A324198, positions 0's in A351254, A356302 and A356303, positions of fixed points in A351250 and in A356309.
Cf. also A355821, A356311.

Programs

  • PARI
    A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
    A324198(n) = gcd(n,A276086(n));
    for(n=0,oo,if(1==A324198(n),print1(n,", ")));

Extensions

Initial 0 prepended by Antti Karttunen, Nov 03 2022

A351251 Denominator of n / A276086(n).

Original entry on oeis.org

1, 2, 3, 2, 9, 18, 5, 10, 15, 10, 9, 90, 25, 50, 75, 10, 225, 450, 125, 250, 75, 250, 1125, 2250, 625, 50, 1875, 1250, 5625, 11250, 7, 14, 21, 14, 63, 18, 35, 70, 105, 70, 63, 630, 25, 350, 525, 70, 1575, 3150, 875, 250, 105, 1750, 7875, 15750, 4375, 1750, 1875, 8750, 39375, 78750, 49, 98, 147, 14, 441, 882, 245, 490
Offset: 0

Views

Author

Antti Karttunen, Feb 05 2022

Keywords

Crossrefs

Cf. A276086, A324198, A351250 (numerators), A351253.
Cf. also A351231.

Programs

  • Mathematica
    Array[Block[{i, m, n = #, p}, m = i = 1; While[n > 0, p = Prime[i]; m *= p^Mod[n, p]; n = Quotient[n, p]; i++]; Denominator[#/m]] &, 68, 0] (* Michael De Vlieger, Feb 06 2022 *)
  • PARI
    A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
    A351251(n) = denominator(n/A276086(n));

Formula

a(n) = A276086(n) / gcd(n,A276086(n)) = A276086(n) / A324198(n).
a(n) = A276086(A351253(n)).

A328387 Numbers k such that A276086(k) is a multiple of k.

Original entry on oeis.org

1, 3, 15, 25, 75, 105, 147, 175, 343, 385, 525, 539, 625, 735, 825, 1029, 1155, 1225, 1331, 1375, 1617, 1815, 2695, 3003, 3025, 3675, 3773, 3993, 4375, 5005, 5145, 5577, 5775, 6655, 6825, 8085, 8125, 8281, 8575, 9075, 9555, 9625, 10725, 11011, 11319, 12675, 12705, 13013, 13377, 15015, 15379, 15925, 17303, 17745, 17787, 17875
Offset: 1

Views

Author

Antti Karttunen, Oct 15 2019

Keywords

Comments

All terms are odd. Of the first 3003 terms, 1709 are multiples of five.

Crossrefs

Indices of 0's in A328386. Indices of 1's in A351250.
Subsequence of A048103 and of A358226.
Cf. also A370114, A358231.

Programs

  • PARI
    A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
    isA328387(n) = (0==(A276086(n)%n));

A369038 Numerator of ratio A003415(n) / A003415(A276086(n)), where A003415 is the arithmetic derivative and A276086 is the primorial base exp-function.

Original entry on oeis.org

0, 1, 1, 2, 1, 5, 1, 3, 6, 7, 1, 8, 1, 9, 8, 2, 1, 7, 1, 12, 2, 13, 1, 11, 2, 3, 27, 16, 1, 31, 1, 8, 14, 19, 4, 5, 1, 21, 16, 34, 1, 41, 1, 12, 39, 5, 1, 56, 14, 9, 4, 14, 1, 27, 16, 46, 22, 31, 1, 46, 1, 33, 51, 16, 6, 61, 1, 36, 26, 59, 1, 13, 1, 39, 1, 8, 6, 71, 1, 11, 108, 43, 1, 62, 22, 9, 32, 1, 1, 41, 20
Offset: 1

Views

Author

Antti Karttunen, Jan 20 2024

Keywords

Crossrefs

Cf. A003415, A276086, A327860, A345000, A369039 (denominators).
Cf. also A351230, A351250.

Programs

  • PARI
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    A327860(n) = { my(s=0, m=1, p=2, e); while(n, e = (n%p); m *= (p^e); s += (e/p); n = n\p; p = nextprime(1+p)); (s*m); };
    A369038(n) = { my(u=A003415(n)); (u/gcd(u,A327860(n))); };

Formula

a(n) = A003415(n) / A345000(n) = A003415(n) / gcd(A003415(n), A327860(n)).
Showing 1-4 of 4 results.