cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A025487 Least integer of each prime signature A124832; also products of primorial numbers A002110.

Original entry on oeis.org

1, 2, 4, 6, 8, 12, 16, 24, 30, 32, 36, 48, 60, 64, 72, 96, 120, 128, 144, 180, 192, 210, 216, 240, 256, 288, 360, 384, 420, 432, 480, 512, 576, 720, 768, 840, 864, 900, 960, 1024, 1080, 1152, 1260, 1296, 1440, 1536, 1680, 1728, 1800, 1920, 2048, 2160, 2304, 2310
Offset: 1

Views

Author

Keywords

Comments

All numbers of the form 2^k1*3^k2*...*p_n^k_n, where k1 >= k2 >= ... >= k_n, sorted.
A111059 is a subsequence. - Reinhard Zumkeller, Jul 05 2010
Choie et al. (2007) call these "Hardy-Ramanujan integers". - Jean-François Alcover, Aug 14 2014
The exponents k1, k2, ... can be read off Abramowitz & Stegun p. 831, column labeled "pi".
For all such sequences b for which it holds that b(n) = b(A046523(n)), the sequence which gives the indices of records in b is a subsequence of this sequence. For example, A002182 which gives the indices of records for A000005, A002110 which gives them for A001221 and A000079 which gives them for A001222. - Antti Karttunen, Jan 18 2019
The prime signature corresponding to a(n) is given in row n of A124832. - M. F. Hasler, Jul 17 2019

Examples

			The first few terms are 1, 2, 2^2, 2*3, 2^3, 2^2*3, 2^4, 2^3*3, 2*3*5, ...
		

Crossrefs

Subsequence of A055932, A191743, and A324583.
Cf. A085089, A101296 (left inverses).
Equals range of values taken by A046523.
Cf. A178799 (first differences), A247451 (squarefree kernel), A146288 (number of divisors).
Rearrangements of this sequence include A036035, A059901, A063008, A077569, A085988, A086141, A087443, A108951, A181821, A181822, A322827, A329886, A329887.
Cf. also array A124832 (row n = prime signature of a(n)) and A304886, A307056.

Programs

  • Haskell
    import Data.Set (singleton, fromList, deleteFindMin, union)
    a025487 n = a025487_list !! (n-1)
    a025487_list = 1 : h [b] (singleton b) bs where
       (_ : b : bs) = a002110_list
       h cs s xs'@(x:xs)
         | m <= x    = m : h (m:cs) (s' `union` fromList (map (* m) cs)) xs'
         | otherwise = x : h (x:cs) (s  `union` fromList (map (* x) (x:cs))) xs
         where (m, s') = deleteFindMin s
    -- Reinhard Zumkeller, Apr 06 2013
    
  • Maple
    isA025487 := proc(n)
        local pset,omega ;
        pset := sort(convert(numtheory[factorset](n),list)) ;
        omega := nops(pset) ;
        if op(-1,pset) <> ithprime(omega) then
            return false;
        end if;
        for i from 1 to omega-1 do
            if padic[ordp](n,ithprime(i)) < padic[ordp](n,ithprime(i+1)) then
                return false;
            end if;
        end do:
        true ;
    end proc:
    A025487 := proc(n)
        option remember ;
        local a;
        if n = 1 then
            1 ;
        else
            for a from procname(n-1)+1 do
                if isA025487(a) then
                    return a;
                end if;
            end do:
        end if;
    end proc:
    seq(A025487(n),n=1..100) ; # R. J. Mathar, May 25 2017
  • Mathematica
    PrimeExponents[n_] := Last /@ FactorInteger[n]; lpe = {}; ln = {1}; Do[pe = Sort@PrimeExponents@n; If[ FreeQ[lpe, pe], AppendTo[lpe, pe]; AppendTo[ln, n]], {n, 2, 2350}]; ln (* Robert G. Wilson v, Aug 14 2004 *)
    (* Second program: generate all terms m <= A002110(n): *)
    f[n_] := {{1}}~Join~
      Block[{lim = Product[Prime@ i, {i, n}],
       ww = NestList[Append[#, 1] &, {1}, n - 1], dec},
       dec[x_] := Apply[Times, MapIndexed[Prime[First@ #2]^#1 &, x]];
       Map[Block[{w = #, k = 1},
          Sort@ Prepend[If[Length@ # == 0, #, #[[1]]],
            Product[Prime@ i, {i, Length@ w}] ] &@ Reap[
             Do[
              If[# < lim,
                 Sow[#]; k = 1,
                 If[k >= Length@ w, Break[], k++]] &@ dec@ Set[w,
                 If[k == 1,
                   MapAt[# + 1 &, w, k],
                   PadLeft[#, Length@ w, First@ #] &@
                     Drop[MapAt[# + Boole[i > 1] &, w, k], k - 1] ]],
               {i, Infinity}] ][[-1]]
    ] &, ww]]; Sort[Join @@ f@ 13] (* Michael De Vlieger, May 19 2018 *)
  • PARI
    isA025487(n)=my(k=valuation(n,2),t);n>>=k;forprime(p=3,default(primelimit),t=valuation(n,p);if(t>k,return(0),k=t);if(k,n/=p^k,return(n==1))) \\ Charles R Greathouse IV, Jun 10 2011
    
  • PARI
    factfollow(n)={local(fm, np, n2);
      fm=factor(n); np=matsize(fm)[1];
      if(np==0,return([2]));
      n2=n*nextprime(fm[np,1]+1);
      if(np==1||fm[np,2]Franklin T. Adams-Watters, Dec 01 2011 */
    
  • PARI
    is(n) = {if(n==1, return(1)); my(f = factor(n));  f[#f~, 1] == prime(#f~) && vecsort(f[, 2],,4) == f[, 2]} \\ David A. Corneth, Feb 14 2019
    
  • PARI
    upto(Nmax)=vecsort(concat(vector(logint(Nmax,2),n,select(t->t<=Nmax,if(n>1,[factorback(primes(#p),Vecrev(p)) || p<-partitions(n)],[1,2]))))) \\ M. F. Hasler, Jul 17 2019
    
  • PARI
    \\ For fast generation of large number of terms, use this program:
    A283980(n) = {my(f=factor(n)); prod(i=1, #f~, my(p=f[i, 1], e=f[i, 2]); if(p==2, 6, nextprime(p+1))^e)}; \\ From A283980
    A025487list(e) = { my(lista = List([1, 2]), i=2, u = 2^e, t); while(lista[i] != u, if(2*lista[i] <= u, listput(lista,2*lista[i]); t = A283980(lista[i]); if(t <= u, listput(lista,t))); i++); vecsort(Vec(lista)); }; \\ Returns a list of terms up to the term 2^e.
    v025487 = A025487list(101);
    A025487(n) = v025487[n];
    for(n=1,#v025487,print1(A025487(n), ", ")); \\ Antti Karttunen, Dec 24 2019
    
  • Sage
    def sharp_primorial(n): return sloane.A002110(prime_pi(n))
    N = 2310
    nmax = 2^floor(log(N,2))
    sorted([j for j in (prod(sharp_primorial(t[0])^t[1] for k, t in enumerate(factor(n))) for n in (1..nmax)) if j <= N])
    # Giuseppe Coppoletta, Jan 26 2015

Formula

What can be said about the asymptotic behavior of this sequence? - Franklin T. Adams-Watters, Jan 06 2010
Hardy & Ramanujan prove that there are exp((2 Pi + o(1))/sqrt(3) * sqrt(log x/log log x)) members of this sequence up to x. - Charles R Greathouse IV, Dec 05 2012
From Antti Karttunen, Jan 18 & Dec 24 2019: (Start)
A085089(a(n)) = n.
A101296(a(n)) = n [which is the first occurrence of n in A101296, and thus also a record.]
A001221(a(n)) = A061395(a(n)) = A061394(n).
A007814(a(n)) = A051903(a(n)) = A051282(n).
a(A101296(n)) = A046523(n).
a(A306802(n)) = A002182(n).
a(n) = A108951(A181815(n)) = A329900(A181817(n)).
If A181815(n) is odd, a(n) = A283980(a(A329904(n))), otherwise a(n) = 2*a(A329904(n)).
(End)
Sum_{n>=1} 1/a(n) = Product_{n>=1} 1/(1 - 1/A002110(n)) = A161360. - Amiram Eldar, Oct 20 2020

Extensions

Offset corrected by Matthew Vandermast, Oct 19 2008
Minor correction by Charles R Greathouse IV, Sep 03 2010

A324198 a(n) = gcd(n, A276086(n)), where A276086 is the primorial base exp-function.

Original entry on oeis.org

1, 1, 1, 3, 1, 1, 1, 1, 1, 3, 5, 1, 1, 1, 1, 15, 1, 1, 1, 1, 5, 3, 1, 1, 1, 25, 1, 3, 1, 1, 1, 1, 1, 3, 1, 7, 1, 1, 1, 3, 5, 1, 7, 1, 1, 15, 1, 1, 1, 7, 25, 3, 1, 1, 1, 5, 7, 3, 1, 1, 1, 1, 1, 21, 1, 1, 1, 1, 1, 3, 35, 1, 1, 1, 1, 75, 1, 7, 1, 1, 5, 3, 1, 1, 7, 5, 1, 3, 1, 1, 1, 7, 1, 3, 1, 1, 1, 1, 49, 3, 5, 1, 1, 1, 1, 105
Offset: 0

Views

Author

Antti Karttunen, Feb 25 2019

Keywords

Crossrefs

Cf. A324583 (positions of ones), A324584 (and terms larger than one).
Cf. A371098 (odd bisection), A371099 [= a(36n+9)].
Cf. also A328231.

Programs

  • Mathematica
    Array[Block[{i, m, n = #, p}, m = i = 1; While[n > 0, p = Prime[i]; m *= p^Mod[n, p]; n = Quotient[n, p]; i++]; GCD[#, m]] &, 106, 0] (* Michael De Vlieger, Feb 04 2022 *)
  • PARI
    A276086(n) = { my(i=0,m=1,pr=1,nextpr); while((n>0),i=i+1; nextpr = prime(i)*pr; if((n%nextpr),m*=(prime(i)^((n%nextpr)/pr));n-=(n%nextpr));pr=nextpr); m; };
    A324198(n) = gcd(n,A276086(n));
    
  • PARI
    A324198(n) = { my(m=1, p=2, orgn=n); while(n, m *= (p^min(n%p,valuation(orgn,p))); n = n\p; p = nextprime(1+p)); (m); }; \\ Antti Karttunen, Oct 21 2019

Formula

a(n) = gcd(n, A276086(n)).
From Antti Karttunen, Oct 21 2019: (Start)
A000005(a(n)) = A327168(n).
a(A328316(n)) = A328323(n).
a(n) = A324580(n) / A328584(n).
(End)

A356302 The least k >= 0 such that n and A276086(n+k) are relatively prime, where A276086 is the primorial base exp-function.

Original entry on oeis.org

0, 0, 0, 3, 0, 0, 0, 0, 0, 3, 20, 0, 0, 0, 0, 15, 0, 0, 0, 0, 10, 3, 0, 0, 0, 5, 0, 3, 0, 0, 0, 0, 0, 3, 0, 175, 0, 0, 0, 3, 20, 0, 168, 0, 0, 15, 0, 0, 0, 161, 10, 3, 0, 0, 0, 5, 154, 3, 0, 0, 0, 0, 0, 147, 0, 0, 0, 0, 0, 3, 140, 0, 0, 0, 0, 15, 0, 2233, 0, 0, 10, 3, 0, 0, 126, 5, 0, 3, 0, 0, 0, 119, 0, 3, 0, 0, 0, 0, 112
Offset: 0

Views

Author

Antti Karttunen, Nov 03 2022

Keywords

Comments

For all nonzero terms, adding a(n) to n in primorial base generates at least one carry. See the formula involving A329041.

Crossrefs

Cf. A324583 (positions of zeros), A324584 (of nonzeros), A356318 (positions where a(n) > 0 and a multiple of n), A356319 (where 0 < a(n) < n).
Cf. A358213, A358214 (conjectured positions of records and their values).
Cf. also A356303, A356304.

Programs

  • PARI
    A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
    A356302(n) = { my(k=0); while(gcd(A276086(n+k),n)!=1,k++); (k); };

Formula

a(n) = A356309(n) - n.
If a(n) > 0, then A000035(a(n)) = A000035(n) and A329041(n, a(n)) > 1.

A356309 The least j >= n such that n and A276086(j) are relatively prime, where A276086 is the primorial base exp-function.

Original entry on oeis.org

0, 1, 2, 6, 4, 5, 6, 7, 8, 12, 30, 11, 12, 13, 14, 30, 16, 17, 18, 19, 30, 24, 22, 23, 24, 30, 26, 30, 28, 29, 30, 31, 32, 36, 34, 210, 36, 37, 38, 42, 60, 41, 210, 43, 44, 60, 46, 47, 48, 210, 60, 54, 52, 53, 54, 60, 210, 60, 58, 59, 60, 61, 62, 210, 64, 65, 66, 67, 68, 72, 210, 71, 72, 73, 74, 90, 76, 2310, 78
Offset: 0

Views

Author

Antti Karttunen, Nov 04 2022

Keywords

Crossrefs

Cf. A324583 (positions of the fixed points), A356314 (positions of the terms that are primorial numbers), A356316 (where a(n) is a multiple of n), A356318 (where a nontrivial multiple), A356319 (where n < a(n) < 2*n).

Programs

  • Mathematica
    f[nn_] := Block[{m = 1, i = 1, n = nn, p}, While[n > 0, p = Prime[i]; m *= p^Mod[n, p]; n = Quotient[n, p]; i++]; m]; Array[Block[{k = #}, While[! CoprimeQ[#, f[k]], k++]; k] &, 79, 0] (* Michael De Vlieger, Nov 06 2022, after Jean-François Alcover at A276086 *)
  • PARI
    A356309(n) = (n+A356302(n)); \\ See code in the latter sequence.

Formula

a(n) = n + A356302(n).

A324584 Numbers n that share a prime factor with A276086(n).

Original entry on oeis.org

3, 9, 10, 15, 20, 21, 25, 27, 33, 35, 39, 40, 42, 45, 49, 50, 51, 55, 56, 57, 63, 69, 70, 75, 77, 80, 81, 84, 85, 87, 91, 93, 98, 99, 100, 105, 110, 111, 112, 115, 117, 119, 123, 126, 129, 130, 133, 135, 140, 141, 145, 147, 153, 154, 159, 160, 161, 165, 168, 170, 171, 175, 177, 182, 183, 189, 190, 195, 196, 200, 201, 203, 205
Offset: 1

Views

Author

Antti Karttunen, Mar 10 2019

Keywords

Comments

Numbers n for which A324198(n) <> 1.

Crossrefs

Cf. A324583 (complement).

Programs

  • PARI
    A276086(n) = { my(i=0,m=1,pr=1,nextpr); while((n>0),i=i+1; nextpr = prime(i)*pr; if((n%nextpr),m*=(prime(i)^((n%nextpr)/pr));n-=(n%nextpr));pr=nextpr); m; };
    A324198(n) = gcd(n,A276086(n));
    for(n=1, oo, if(1!=A324198(n), print1(n, ", ")));

A356311 Numbers k for which A003415(k) and A276086(k) are relatively prime, where A003415 is the arithmetic derivative, and A276086 is the primorial base exp-function.

Original entry on oeis.org

0, 2, 3, 4, 5, 7, 10, 11, 12, 13, 16, 17, 18, 19, 22, 23, 24, 28, 29, 30, 31, 32, 34, 37, 40, 41, 42, 43, 47, 53, 54, 56, 58, 59, 60, 61, 66, 67, 70, 71, 72, 73, 78, 79, 80, 82, 83, 84, 89, 90, 96, 97, 101, 103, 104, 105, 107, 108, 109, 113, 114, 118, 120, 124, 127, 130, 131, 132, 136, 137, 138, 139, 140, 142, 144
Offset: 1

Views

Author

Antti Karttunen, Nov 03 2022

Keywords

Crossrefs

Positions of 1's in A327858. Positions of 0's in A356304 (for n >= 2) and in A356305.
Cf. A003415, A276086, A356310 (characteristic function), A356312 (complement).
Cf. also A324583.

Programs

A351254 a(n) = A276085(gcd(n, A276086(n))).

Original entry on oeis.org

0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 6, 0, 0, 0, 0, 8, 0, 0, 0, 0, 6, 2, 0, 0, 0, 12, 0, 2, 0, 0, 0, 0, 0, 2, 0, 30, 0, 0, 0, 2, 6, 0, 30, 0, 0, 8, 0, 0, 0, 30, 12, 2, 0, 0, 0, 6, 30, 2, 0, 0, 0, 0, 0, 32, 0, 0, 0, 0, 0, 2, 36, 0, 0, 0, 0, 14, 0, 30, 0, 0, 6, 2, 0, 0, 30, 6, 0, 2, 0, 0, 0, 30, 0, 2, 0, 0, 0, 0, 60, 2, 6
Offset: 0

Views

Author

Antti Karttunen, Feb 05 2022

Keywords

Crossrefs

Cf. also A351234.
Cf. A324583 (positions of the rest of zeros after a(0)=0).

Programs

  • PARI
    A002110(n) = prod(i=1,n,prime(i));
    A276085(n) = { my(f = factor(n)); sum(k=1, #f~, f[k, 2]*A002110(primepi(f[k, 1])-1)); };
    A324198(n) = { my(m=1, p=2, orgn=n); while(n, m *= (p^min(n%p, valuation(orgn, p))); n = n\p; p = nextprime(1+p)); (m); };
    A351254(n) = A276085(A324198(n));

Formula

a(n) = A276085(A324198(n)) = A276085(gcd(n, A276086(n))).
a(n) = n - A351253(n).

A355821 Numbers k for which A003961(k) and A276086(k) are relatively prime, where A003961 is fully multiplicative with a(p) = nextprime(p), and A276086 is primorial base exp-function.

Original entry on oeis.org

1, 3, 5, 7, 11, 13, 17, 19, 23, 25, 29, 31, 33, 37, 41, 43, 47, 49, 53, 59, 61, 63, 67, 71, 73, 77, 79, 83, 89, 91, 93, 97, 101, 103, 107, 109, 113, 119, 121, 123, 127, 131, 133, 137, 139, 143, 149, 151, 153, 157, 161, 163, 167, 169, 173, 179, 181, 183, 187, 191, 193, 197, 199, 203, 209, 211, 213, 215, 221, 223, 227
Offset: 1

Views

Author

Antti Karttunen, Jul 18 2022

Keywords

Crossrefs

Positions of 1's in A355442 and in A355001.
Cf. A003961, A276086, A355820 (characteristic function), A355822 (complement).
Cf. also A324583.

Programs

  • PARI
    A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
    A355820(n) = (1==gcd(A003961(n), A276086(n)));
    isA355821(n) = A355820(n);
    
  • Python
    from math import prod, gcd
    from itertools import count, islice
    from sympy import factorint, nextprime
    def A355821_gen(startvalue=1): # generator of terms >= startvalue
        for n in count(max(startvalue,1)):
            k = prod(nextprime(p)**e for p, e in factorint(n).items())
            m, p, c = 1, 2, n
            while c:
                c, a = divmod(c,p)
                m *= p**a
                p = nextprime(p)
            if gcd(k,m) == 1:
                yield n
    A355821_list = list(islice(A355821_gen(),30)) # Chai Wah Wu, Jul 18 2022

A356316 Numbers k such that k divides the least j >= k for which k and A276086(j) are coprime, where A276086 is the primorial base exp-function.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 22, 23, 24, 26, 28, 29, 30, 31, 32, 34, 35, 36, 37, 38, 41, 42, 43, 44, 46, 47, 48, 52, 53, 54, 58, 59, 60, 61, 62, 64, 65, 66, 67, 68, 70, 71, 72, 73, 74, 76, 77, 78, 79, 82, 83, 86, 88, 89, 90, 92, 94, 95, 96, 97, 101, 102, 103, 104, 105, 106, 107
Offset: 1

Views

Author

Antti Karttunen, Nov 04 2022

Keywords

Comments

Numbers k such that k divides A356309(k).

Crossrefs

Cf. A276086, A356309, A356315 (characteristic function), A356317 (complement).
Disjoint union of A324583 and A356318.

Programs

A351250 Numerator of n / A276086(n).

Original entry on oeis.org

0, 1, 2, 1, 4, 5, 6, 7, 8, 3, 2, 11, 12, 13, 14, 1, 16, 17, 18, 19, 4, 7, 22, 23, 24, 1, 26, 9, 28, 29, 30, 31, 32, 11, 34, 5, 36, 37, 38, 13, 8, 41, 6, 43, 44, 3, 46, 47, 48, 7, 2, 17, 52, 53, 54, 11, 8, 19, 58, 59, 60, 61, 62, 3, 64, 65, 66, 67, 68, 23, 2, 71, 72, 73, 74, 1, 76, 11, 78, 79, 16, 27, 82, 83, 12, 17
Offset: 0

Views

Author

Antti Karttunen, Feb 05 2022

Keywords

Crossrefs

Cf. A276086, A324198, A328386, A328387 (positions of ones), A351251 (denominators).
Cf. A324583 (the positions of fixed points after the zero).
Cf. also A351230.

Programs

  • Mathematica
    Array[Block[{i, m, n = #, p}, m = i = 1; While[n > 0, p = Prime[i]; m *= p^Mod[n, p]; n = Quotient[n, p]; i++]; Numerator[#/m]] &, 86, 0] (* Michael De Vlieger, Feb 06 2022 *)
  • PARI
    A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
    A351250(n) = numerator(n/A276086(n));

Formula

a(n) = n / A324198(n) = n / gcd(n, A276086(n)).
a(n) = n / gcd(n, A328386(n)).
Showing 1-10 of 14 results. Next