A351313 Sum of the 7th powers of the square divisors of n.
1, 1, 1, 16385, 1, 1, 1, 16385, 4782970, 1, 1, 16385, 1, 1, 1, 268451841, 1, 4782970, 1, 16385, 1, 1, 1, 16385, 6103515626, 1, 4782970, 16385, 1, 1, 1, 268451841, 1, 1, 1, 78368963450, 1, 1, 1, 16385, 1, 1, 1, 16385, 4782970, 1, 1, 268451841, 678223072850, 6103515626, 1
Offset: 1
Examples
a(16) = 268451841; a(16) = Sum_{d^2|16} (d^2)^7 = (1^2)^7 + (2^2)^7 + (4^2)^7 = 268451841.
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
f[p_, e_] := (p^(14*(1 + Floor[e/2])) - 1)/(p^14 - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Feb 07 2022 *)
Formula
a(n) = Sum_{d^2|n} (d^2)^7.
Multiplicative with a(p) = (p^(14*(1+floor(e/2))) - 1)/(p^14 - 1). - Amiram Eldar, Feb 07 2022
From Amiram Eldar, Sep 20 2023: (Start)
Dirichlet g.f.: zeta(s) * zeta(2*s-14).
Sum_{k=1..n} a(k) ~ (zeta(15/2)/15) * n^(15/2). (End)
a(n) = Sum_{d|n} d^7 * c(d), where c = A010052. - Wesley Ivan Hurt, Jun 21 2024
a(n) = Sum_{d|n} lambda(d)*d^7*sigma_7(n/d), where lambda = A008836. - Ridouane Oudra, Jul 19 2025
Comments