cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A351346 Dirichlet g.f.: Product_{p prime} 1 / (1 - 2*p^(-s) - p^(-2*s)).

Original entry on oeis.org

1, 2, 2, 5, 2, 4, 2, 12, 5, 4, 2, 10, 2, 4, 4, 29, 2, 10, 2, 10, 4, 4, 2, 24, 5, 4, 12, 10, 2, 8, 2, 70, 4, 4, 4, 25, 2, 4, 4, 24, 2, 8, 2, 10, 10, 4, 2, 58, 5, 10, 4, 10, 2, 24, 4, 24, 4, 4, 2, 20, 2, 4, 10, 169, 4, 8, 2, 10, 4, 8, 2, 60, 2, 4, 10, 10, 4, 8, 2, 58, 29, 4, 2, 20, 4, 4, 4, 24, 2, 20
Offset: 1

Views

Author

Ilya Gutkovskiy, Feb 08 2022

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := Fibonacci[e + 1, 2]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Table[a[n], {n, 1, 90}]
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, 1/(1 - 2*X - X^2))[n], ", ")) \\ Vaclav Kotesovec, Feb 10 2022

Formula

Multiplicative with a(p^e) = Pell(e+1).
From Vaclav Kotesovec, Feb 11 2022: (Start)
Sum_{k=1..n} a(k) ~ c * n^s, where
s = log(1 + sqrt(2)) / log(2) = 1.271553303163611972...,
c = 8.3717222015175571... = (1 + sqrt(2)) / (2^(3/2) * log(1 + sqrt(2))) * Product_{p primes > 2} 1 / (1 - 2*p^(-s) - p^(-2*s)),
or with better convergence
c = zeta(s)^2 / (sqrt(2) * (1 + sqrt(2)) * log(1 + sqrt(2))) * Product_{p primes > 2} (1 - p^(-s))^2 / (1 - 2*p^(-s) - p^(-2*s)). (End)