A351372 Array of triples (x,y,z) satisfy the Diophantine equation (x+y)^2 + (y+z)^2 + (z+x)^2 = 12*x*y*z, 1 <= x <= y <= z. (sorted by z).
1, 1, 1, 1, 1, 3, 1, 3, 13, 1, 13, 61, 3, 13, 217, 1, 61, 291, 1, 291, 1393, 3, 217, 3673, 13, 61, 4683, 1, 1393, 6673, 13, 217, 16693, 1, 6673, 31971, 3, 3673, 62221, 61, 291, 106153, 1, 31971, 153181, 13, 4683, 360517, 1, 153181, 733933, 3, 62221, 1054081
Offset: 1
Examples
The array of triples begins: ( 1, 1, 1), ( 1, 1, 3), ( 1, 3, 13), ( 1, 13, 61), ( 3, 13, 217), ( 1, 61, 291), ( 1, 291, 1393), ( 3, 217, 3673), (13, 61, 4683), ( 1, 1393, 6673), (13, 217, 16693), ...
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..10002
- Yasuaki Gyoda, Positive integer solutions to (x+y)^2+(y+z)^2+(z+x)^2=12xyz, arXiv:2109.09639 [math.NT], 2021.
Crossrefs
Cf. A291694.
Programs
-
PARI
N=5000; for(k=1, N, for(j=1, k, for(i=1, j, if(i*j>k, break); if((i+j)^2+(j+k)^2+(k+i)^2==12*i*j*k, print1(i, ", ", j, ", ", k, ", ")))));
-
Python
from math import isqrt from itertools import count, islice def A351372_gen(): # generator of terms for z in count(1): z2 = z**2 for y in range(1,z+1): a = isqrt(d := 3*y**2*(12*z2 - 4*z - 1) - 3*z2*(4*y + 1) - 2*y*z) if a**2 == d: x, r = divmod(12*y*z - 2*y - 2*z - 2*a,4) if y <= x <= z and r == 0: yield from (y,x,z) A351372_list = list(islice(A351372_gen(),21)) # Chai Wah Wu, Feb 16 2022
Extensions
More terms from Chai Wah Wu, Feb 16 2022