cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A351395 Sum of the divisors of n that are either squarefree, prime powers, or both.

Original entry on oeis.org

1, 3, 4, 7, 6, 12, 8, 15, 13, 18, 12, 16, 14, 24, 24, 31, 18, 21, 20, 22, 32, 36, 24, 24, 31, 42, 40, 28, 30, 72, 32, 63, 48, 54, 48, 25, 38, 60, 56, 30, 42, 96, 44, 40, 33, 72, 48, 40, 57, 43, 72, 46, 54, 48, 72, 36, 80, 90, 60, 76, 62, 96, 41, 127, 84, 144, 68, 58, 96, 144, 72
Offset: 1

Views

Author

Wesley Ivan Hurt, Feb 09 2022

Keywords

Examples

			a(36) = 25; 36 has 4 squarefree divisors 1,2,3,6 (where the primes 2 and 3 are both squarefree and 1st powers of primes) and 2 (additional) divisors that are powers of primes, 2^2 and 3^2. The sum of the divisors is then 1+2+3+4+6+9 = 25.
		

Crossrefs

Sums of divisors: A048250 (squarefree), A023889 (prime powers), A008472 (prime).

Programs

  • Mathematica
    Array[DivisorSum[#, #*Sign[MoebiusMu[#]^2 + Boole[PrimeNu[#] == 1]] &] &, 71] (* Michael De Vlieger, Feb 10 2022 *)
  • PARI
    a(n) = sumdiv(n, d, if (issquarefree(d) || isprimepower(d), d)); \\ Michel Marcus, Feb 10 2022

Formula

a(n) = Sum_{d|n} d * sign(mu(d)^2 + [omega(d) = 1]).